Matches in SemOpenAlex for { <https://semopenalex.org/work/W2560036562> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W2560036562 abstract "Deep neural network (DNN) has recently received much attention due to its superior performance in classifying data with complex structure. In this paper, we investigate application of DNN technique to automatic classification of modulation classes for digitally modulated signals. First, we select twenty one statistical features which exhibit good separation in empirical distributions for all modulation formats considered (i.e., BPSK, QPSK, 8PSK, 16QAM, and 64QAM). These features are extracted from the received signal samples and used as the input to the fully connected DNN with three hidden layer. The training data containing 25,000 feature vectors is generated by the computer simulation under both additive Gaussian white noise (AWGN) and Rician fading channels. Our test results show that the proposed method brings dramatic performance improvement over the existing classifier especially for high Doppler fading channels." @default.
- W2560036562 created "2016-12-16" @default.
- W2560036562 creator A5010673789 @default.
- W2560036562 creator A5021393078 @default.
- W2560036562 creator A5034676531 @default.
- W2560036562 creator A5076889634 @default.
- W2560036562 creator A5086290835 @default.
- W2560036562 date "2016-10-01" @default.
- W2560036562 modified "2023-10-01" @default.
- W2560036562 title "Deep neural network-based automatic modulation classification technique" @default.
- W2560036562 cites W1608380097 @default.
- W2560036562 cites W1880555763 @default.
- W2560036562 cites W2002643600 @default.
- W2560036562 cites W2042272696 @default.
- W2560036562 cites W2044245074 @default.
- W2560036562 cites W2048654658 @default.
- W2560036562 cites W2130014182 @default.
- W2560036562 cites W2157473107 @default.
- W2560036562 cites W2170778725 @default.
- W2560036562 cites W2553546178 @default.
- W2560036562 doi "https://doi.org/10.1109/ictc.2016.7763537" @default.
- W2560036562 hasPublicationYear "2016" @default.
- W2560036562 type Work @default.
- W2560036562 sameAs 2560036562 @default.
- W2560036562 citedByCount "73" @default.
- W2560036562 countsByYear W25600365622017 @default.
- W2560036562 countsByYear W25600365622018 @default.
- W2560036562 countsByYear W25600365622019 @default.
- W2560036562 countsByYear W25600365622020 @default.
- W2560036562 countsByYear W25600365622021 @default.
- W2560036562 countsByYear W25600365622022 @default.
- W2560036562 countsByYear W25600365622023 @default.
- W2560036562 crossrefType "proceedings-article" @default.
- W2560036562 hasAuthorship W2560036562A5010673789 @default.
- W2560036562 hasAuthorship W2560036562A5021393078 @default.
- W2560036562 hasAuthorship W2560036562A5034676531 @default.
- W2560036562 hasAuthorship W2560036562A5076889634 @default.
- W2560036562 hasAuthorship W2560036562A5086290835 @default.
- W2560036562 hasConcept C107038049 @default.
- W2560036562 hasConcept C123079801 @default.
- W2560036562 hasConcept C127162648 @default.
- W2560036562 hasConcept C138885662 @default.
- W2560036562 hasConcept C153180895 @default.
- W2560036562 hasConcept C154945302 @default.
- W2560036562 hasConcept C169334058 @default.
- W2560036562 hasConcept C186378180 @default.
- W2560036562 hasConcept C28490314 @default.
- W2560036562 hasConcept C32409245 @default.
- W2560036562 hasConcept C41008148 @default.
- W2560036562 hasConcept C50644808 @default.
- W2560036562 hasConcept C56296756 @default.
- W2560036562 hasConcept C60472773 @default.
- W2560036562 hasConcept C76155785 @default.
- W2560036562 hasConcept C81978471 @default.
- W2560036562 hasConceptScore W2560036562C107038049 @default.
- W2560036562 hasConceptScore W2560036562C123079801 @default.
- W2560036562 hasConceptScore W2560036562C127162648 @default.
- W2560036562 hasConceptScore W2560036562C138885662 @default.
- W2560036562 hasConceptScore W2560036562C153180895 @default.
- W2560036562 hasConceptScore W2560036562C154945302 @default.
- W2560036562 hasConceptScore W2560036562C169334058 @default.
- W2560036562 hasConceptScore W2560036562C186378180 @default.
- W2560036562 hasConceptScore W2560036562C28490314 @default.
- W2560036562 hasConceptScore W2560036562C32409245 @default.
- W2560036562 hasConceptScore W2560036562C41008148 @default.
- W2560036562 hasConceptScore W2560036562C50644808 @default.
- W2560036562 hasConceptScore W2560036562C56296756 @default.
- W2560036562 hasConceptScore W2560036562C60472773 @default.
- W2560036562 hasConceptScore W2560036562C76155785 @default.
- W2560036562 hasConceptScore W2560036562C81978471 @default.
- W2560036562 hasLocation W25600365621 @default.
- W2560036562 hasOpenAccess W2560036562 @default.
- W2560036562 hasPrimaryLocation W25600365621 @default.
- W2560036562 hasRelatedWork W1491655785 @default.
- W2560036562 hasRelatedWork W1970875229 @default.
- W2560036562 hasRelatedWork W2132847171 @default.
- W2560036562 hasRelatedWork W2160672345 @default.
- W2560036562 hasRelatedWork W2161121422 @default.
- W2560036562 hasRelatedWork W2161288248 @default.
- W2560036562 hasRelatedWork W2167888440 @default.
- W2560036562 hasRelatedWork W2185785919 @default.
- W2560036562 hasRelatedWork W836292691 @default.
- W2560036562 hasRelatedWork W2781582753 @default.
- W2560036562 isParatext "false" @default.
- W2560036562 isRetracted "false" @default.
- W2560036562 magId "2560036562" @default.
- W2560036562 workType "article" @default.