Matches in SemOpenAlex for { <https://semopenalex.org/work/W2560070550> ?p ?o ?g. }
- W2560070550 endingPage "47" @default.
- W2560070550 startingPage "28" @default.
- W2560070550 abstract "Text genre classification is the process of identifying functional characteristics of text documents. The immense quantity of text documents available on the web can be properly filtered, organised and retrieved with the use of text genre classification, which may have potential use on several other tasks of natural language processing and information retrieval. Genre may refer to several aspects of text documents, such as function and purpose. The language function analysis (LFA) concentrates on single aspect of genres and it aims to classify text documents into three abstract classes, such as expressive, appellative and informative. Text genre classification is typically performed by supervised machine learning algorithms. The extraction of an efficient feature set to represent text documents is an essential task for building a robust classification scheme with high predictive performance. In addition, ensemble learning, which combines the outputs of individual classifiers to obtain a robust classification scheme, is a promising research field in machine learning research. In this regard, this article presents an extensive comparative analysis of different feature engineering schemes (such as features used in authorship attribution, linguistic features, character n-grams, part of speech n-grams and the frequency of the most discriminative words) and five different base learners (Naïve Bayes, support vector machines, logistic regression, k-nearest neighbour and Random Forest) in conjunction with ensemble learning methods (such as Boosting, Bagging and Random Subspace). Based on the empirical analysis, an ensemble classification scheme is presented, which integrates Random Subspace ensemble of Random Forest with four types of features (features used in authorship attribution, character n-grams, part of speech n-grams and the frequency of the most discriminative words). For LFA corpus, the highest average predictive performance obtained by the proposed scheme is 94.43%." @default.
- W2560070550 created "2016-12-16" @default.
- W2560070550 creator A5001374957 @default.
- W2560070550 date "2016-12-01" @default.
- W2560070550 modified "2023-10-13" @default.
- W2560070550 title "An ensemble scheme based on language function analysis and feature engineering for text genre classification" @default.
- W2560070550 cites W1426199569 @default.
- W2560070550 cites W1436652029 @default.
- W2560070550 cites W1534477342 @default.
- W2560070550 cites W1984058506 @default.
- W2560070550 cites W2015525779 @default.
- W2560070550 cites W2021137987 @default.
- W2560070550 cites W2027582570 @default.
- W2560070550 cites W2045455073 @default.
- W2560070550 cites W2062151674 @default.
- W2560070550 cites W2067831340 @default.
- W2560070550 cites W2071238250 @default.
- W2560070550 cites W2096352448 @default.
- W2560070550 cites W2113242816 @default.
- W2560070550 cites W2115629999 @default.
- W2560070550 cites W2121041757 @default.
- W2560070550 cites W2124144781 @default.
- W2560070550 cites W2133990480 @default.
- W2560070550 cites W2143455647 @default.
- W2560070550 cites W2146645312 @default.
- W2560070550 cites W2155806188 @default.
- W2560070550 cites W2156909104 @default.
- W2560070550 cites W2165431734 @default.
- W2560070550 cites W2317515691 @default.
- W2560070550 cites W2339974927 @default.
- W2560070550 cites W2401796048 @default.
- W2560070550 cites W2408246687 @default.
- W2560070550 cites W2495196114 @default.
- W2560070550 cites W2911964244 @default.
- W2560070550 cites W40976687 @default.
- W2560070550 cites W4212883601 @default.
- W2560070550 cites W4232478844 @default.
- W2560070550 cites W4237534430 @default.
- W2560070550 cites W4244238212 @default.
- W2560070550 cites W4248018214 @default.
- W2560070550 cites W4250089123 @default.
- W2560070550 cites W2151927372 @default.
- W2560070550 doi "https://doi.org/10.1177/0165551516677911" @default.
- W2560070550 hasPublicationYear "2016" @default.
- W2560070550 type Work @default.
- W2560070550 sameAs 2560070550 @default.
- W2560070550 citedByCount "191" @default.
- W2560070550 countsByYear W25600705502018 @default.
- W2560070550 countsByYear W25600705502019 @default.
- W2560070550 countsByYear W25600705502020 @default.
- W2560070550 countsByYear W25600705502021 @default.
- W2560070550 countsByYear W25600705502022 @default.
- W2560070550 countsByYear W25600705502023 @default.
- W2560070550 crossrefType "journal-article" @default.
- W2560070550 hasAuthorship W2560070550A5001374957 @default.
- W2560070550 hasConcept C119857082 @default.
- W2560070550 hasConcept C12267149 @default.
- W2560070550 hasConcept C134306372 @default.
- W2560070550 hasConcept C138885662 @default.
- W2560070550 hasConcept C154945302 @default.
- W2560070550 hasConcept C169258074 @default.
- W2560070550 hasConcept C204321447 @default.
- W2560070550 hasConcept C2776401178 @default.
- W2560070550 hasConcept C2780479914 @default.
- W2560070550 hasConcept C33923547 @default.
- W2560070550 hasConcept C41008148 @default.
- W2560070550 hasConcept C41895202 @default.
- W2560070550 hasConcept C45942800 @default.
- W2560070550 hasConcept C46686674 @default.
- W2560070550 hasConcept C52001869 @default.
- W2560070550 hasConcept C77618280 @default.
- W2560070550 hasConcept C97931131 @default.
- W2560070550 hasConceptScore W2560070550C119857082 @default.
- W2560070550 hasConceptScore W2560070550C12267149 @default.
- W2560070550 hasConceptScore W2560070550C134306372 @default.
- W2560070550 hasConceptScore W2560070550C138885662 @default.
- W2560070550 hasConceptScore W2560070550C154945302 @default.
- W2560070550 hasConceptScore W2560070550C169258074 @default.
- W2560070550 hasConceptScore W2560070550C204321447 @default.
- W2560070550 hasConceptScore W2560070550C2776401178 @default.
- W2560070550 hasConceptScore W2560070550C2780479914 @default.
- W2560070550 hasConceptScore W2560070550C33923547 @default.
- W2560070550 hasConceptScore W2560070550C41008148 @default.
- W2560070550 hasConceptScore W2560070550C41895202 @default.
- W2560070550 hasConceptScore W2560070550C45942800 @default.
- W2560070550 hasConceptScore W2560070550C46686674 @default.
- W2560070550 hasConceptScore W2560070550C52001869 @default.
- W2560070550 hasConceptScore W2560070550C77618280 @default.
- W2560070550 hasConceptScore W2560070550C97931131 @default.
- W2560070550 hasIssue "1" @default.
- W2560070550 hasLocation W25600705501 @default.
- W2560070550 hasOpenAccess W2560070550 @default.
- W2560070550 hasPrimaryLocation W25600705501 @default.
- W2560070550 hasRelatedWork W2813978197 @default.
- W2560070550 hasRelatedWork W2979979539 @default.
- W2560070550 hasRelatedWork W3127425528 @default.
- W2560070550 hasRelatedWork W3195168932 @default.
- W2560070550 hasRelatedWork W3204641204 @default.