Matches in SemOpenAlex for { <https://semopenalex.org/work/W2560306987> ?p ?o ?g. }
- W2560306987 endingPage "3604" @default.
- W2560306987 startingPage "3573" @default.
- W2560306987 abstract "Abstract. We compare simulations from three high-top (with upper lid above 120 km) and five medium-top (with upper lid around 80 km) atmospheric models with observations of odd nitrogen (NOx = NO + NO2), temperature, and carbon monoxide from seven satellite instruments (ACE-FTS on SciSat, GOMOS, MIPAS, and SCIAMACHY on Envisat, MLS on Aura, SABER on TIMED, and SMR on Odin) during the Northern Hemisphere (NH) polar winter 2008/2009. The models included in the comparison are the 3-D chemistry transport model 3dCTM, the ECHAM5/MESSy Atmospheric Chemistry (EMAC) model, FinROSE, the Hamburg Model of the Neutral and Ionized Atmosphere (HAMMONIA), the Karlsruhe Simulation Model of the Middle Atmosphere (KASIMA), the modelling tools for SOlar Climate Ozone Links studies (SOCOL and CAO-SOCOL), and the Whole Atmosphere Community Climate Model (WACCM4). The comparison focuses on the energetic particle precipitation (EPP) indirect effect, that is, the polar winter descent of NOx largely produced by EPP in the mesosphere and lower thermosphere. A particular emphasis is given to the impact of the sudden stratospheric warming (SSW) in January 2009 and the subsequent elevated stratopause (ES) event associated with enhanced descent of mesospheric air. The chemistry climate model simulations have been nudged toward reanalysis data in the troposphere and stratosphere while being unconstrained above. An odd nitrogen upper boundary condition obtained from MIPAS observations has further been applied to medium-top models. Most models provide a good representation of the mesospheric tracer descent in general, and the EPP indirect effect in particular, during the unperturbed (pre-SSW) period of the NH winter 2008/2009. The observed NOx descent into the lower mesosphere and stratosphere is generally reproduced within 20 %. Larger discrepancies of a few model simulations could be traced back either to the impact of the models' gravity wave drag scheme on the polar wintertime meridional circulation or to a combination of prescribed NOx mixing ratio at the uppermost model layer and low vertical resolution. In March–April, after the ES event, however, modelled mesospheric and stratospheric NOx distributions deviate significantly from the observations. The too-fast and early downward propagation of the NOx tongue, encountered in most simulations, coincides with a temperature high bias in the lower mesosphere (0.2–0.05 hPa), likely caused by an overestimation of descent velocities. In contrast, upper-mesospheric temperatures (at 0.05–0.001 hPa) are generally underestimated by the high-top models after the onset of the ES event, being indicative for too-slow descent and hence too-low NOx fluxes. As a consequence, the magnitude of the simulated NOx tongue is generally underestimated by these models. Descending NOx amounts simulated with medium-top models are on average closer to the observations but show a large spread of up to several hundred percent. This is primarily attributed to the different vertical model domains in which the NOx upper boundary condition is applied. In general, the intercomparison demonstrates the ability of state-of-the-art atmospheric models to reproduce the EPP indirect effect in dynamically and geomagnetically quiescent NH winter conditions. The encountered differences between observed and simulated NOx, CO, and temperature distributions during the perturbed phase of the 2009 NH winter, however, emphasize the need for model improvements in the dynamical representation of elevated stratopause events in order to allow for a better description of the EPP indirect effect under these particular conditions." @default.
- W2560306987 created "2016-12-16" @default.
- W2560306987 creator A5001012995 @default.
- W2560306987 creator A5001200537 @default.
- W2560306987 creator A5004323084 @default.
- W2560306987 creator A5005131041 @default.
- W2560306987 creator A5006527225 @default.
- W2560306987 creator A5007349272 @default.
- W2560306987 creator A5012934125 @default.
- W2560306987 creator A5017289842 @default.
- W2560306987 creator A5021856838 @default.
- W2560306987 creator A5026346395 @default.
- W2560306987 creator A5027594355 @default.
- W2560306987 creator A5027723126 @default.
- W2560306987 creator A5029184609 @default.
- W2560306987 creator A5032548201 @default.
- W2560306987 creator A5033702993 @default.
- W2560306987 creator A5050407382 @default.
- W2560306987 creator A5050542207 @default.
- W2560306987 creator A5051692455 @default.
- W2560306987 creator A5059241432 @default.
- W2560306987 creator A5064272407 @default.
- W2560306987 creator A5064771063 @default.
- W2560306987 creator A5070940434 @default.
- W2560306987 creator A5071107014 @default.
- W2560306987 creator A5071277995 @default.
- W2560306987 creator A5084191391 @default.
- W2560306987 creator A5086542786 @default.
- W2560306987 date "2017-03-14" @default.
- W2560306987 modified "2023-10-15" @default.
- W2560306987 title "HEPPA-II model–measurement intercomparison project: EPP indirect effects during the dynamically perturbed NH winter 2008–2009" @default.
- W2560306987 cites W1483015032 @default.
- W2560306987 cites W1529898429 @default.
- W2560306987 cites W1530703572 @default.
- W2560306987 cites W1537749201 @default.
- W2560306987 cites W1574038548 @default.
- W2560306987 cites W1881261820 @default.
- W2560306987 cites W1952123198 @default.
- W2560306987 cites W1964565573 @default.
- W2560306987 cites W1965121024 @default.
- W2560306987 cites W1965893780 @default.
- W2560306987 cites W1966401268 @default.
- W2560306987 cites W1971402044 @default.
- W2560306987 cites W1971793635 @default.
- W2560306987 cites W1979451241 @default.
- W2560306987 cites W1979787400 @default.
- W2560306987 cites W1989941057 @default.
- W2560306987 cites W1995549547 @default.
- W2560306987 cites W1996897617 @default.
- W2560306987 cites W2002348323 @default.
- W2560306987 cites W2009075203 @default.
- W2560306987 cites W2010679600 @default.
- W2560306987 cites W2012108482 @default.
- W2560306987 cites W2014066645 @default.
- W2560306987 cites W2015490790 @default.
- W2560306987 cites W2015780084 @default.
- W2560306987 cites W2016477418 @default.
- W2560306987 cites W2018385818 @default.
- W2560306987 cites W2023744473 @default.
- W2560306987 cites W2025757564 @default.
- W2560306987 cites W2032488720 @default.
- W2560306987 cites W2035796177 @default.
- W2560306987 cites W2036192608 @default.
- W2560306987 cites W2042290651 @default.
- W2560306987 cites W2042694696 @default.
- W2560306987 cites W2043083624 @default.
- W2560306987 cites W2043825060 @default.
- W2560306987 cites W2049653906 @default.
- W2560306987 cites W2050797578 @default.
- W2560306987 cites W2051325681 @default.
- W2560306987 cites W2051416171 @default.
- W2560306987 cites W2055793666 @default.
- W2560306987 cites W2056110566 @default.
- W2560306987 cites W2057336394 @default.
- W2560306987 cites W2058464886 @default.
- W2560306987 cites W2059805771 @default.
- W2560306987 cites W2062353851 @default.
- W2560306987 cites W2070025379 @default.
- W2560306987 cites W2070381285 @default.
- W2560306987 cites W2075006327 @default.
- W2560306987 cites W2078138714 @default.
- W2560306987 cites W2083222449 @default.
- W2560306987 cites W2084329464 @default.
- W2560306987 cites W2088871996 @default.
- W2560306987 cites W2090718018 @default.
- W2560306987 cites W2092029353 @default.
- W2560306987 cites W2098543448 @default.
- W2560306987 cites W2099475190 @default.
- W2560306987 cites W2103947974 @default.
- W2560306987 cites W2104718076 @default.
- W2560306987 cites W2105966198 @default.
- W2560306987 cites W2106575254 @default.
- W2560306987 cites W2107973903 @default.
- W2560306987 cites W2112895954 @default.
- W2560306987 cites W2115247641 @default.
- W2560306987 cites W2117169459 @default.
- W2560306987 cites W2117918310 @default.
- W2560306987 cites W2121616198 @default.