Matches in SemOpenAlex for { <https://semopenalex.org/work/W2560337053> ?p ?o ?g. }
Showing items 1 to 45 of
45
with 100 items per page.
- W2560337053 abstract "Active Learning (AL) is a methodology from machine learning in which the learner interacts with the data source. In this paper, we investigate application of AL techniques to a new domain: regression problems in performance analysis. For computational systems with many factors, each of which can take on many levels, fixed experiment designs can require many experiments, and can explore the problem space inefficiently. We address these problems with a dynamic, adaptive experiment design, using AL in conjunction with Gaussian Process Regression (GPR). The performance analysis process is seeded with a small number of initial experiments, then GPR provides estimates of regression confidence across the full input space. AL is used to suggest follow-up experiments to run, in general, it will suggest experiments in areas where the GRP model indicates low confidence, and through repeated experiments, the process eventually achieves high confidence throughout the input space. We apply this approach to the problem of estimating performance and energy usage of HPGMG-FE, and create good-quality predictive models for the quantities of interest, with low error and reduced cost, using only a modest number of experiments. Our analysis shows that the error reduction achieved from replacing the basic AL algorithm with a cost-aware algorithm can be significant, reaching up to 38% for the same computational cost of experiments." @default.
- W2560337053 created "2016-12-16" @default.
- W2560337053 creator A5002834603 @default.
- W2560337053 creator A5073696890 @default.
- W2560337053 creator A5091156524 @default.
- W2560337053 date "2016-09-01" @default.
- W2560337053 modified "2023-09-25" @default.
- W2560337053 title "Active Learning in Performance Analysis" @default.
- W2560337053 cites W1993615002 @default.
- W2560337053 cites W2135393913 @default.
- W2560337053 cites W2513414683 @default.
- W2560337053 cites W4211049957 @default.
- W2560337053 cites W4230229159 @default.
- W2560337053 doi "https://doi.org/10.1109/cluster.2016.63" @default.
- W2560337053 hasPublicationYear "2016" @default.
- W2560337053 type Work @default.
- W2560337053 sameAs 2560337053 @default.
- W2560337053 citedByCount "22" @default.
- W2560337053 countsByYear W25603370532017 @default.
- W2560337053 countsByYear W25603370532018 @default.
- W2560337053 countsByYear W25603370532020 @default.
- W2560337053 countsByYear W25603370532021 @default.
- W2560337053 crossrefType "proceedings-article" @default.
- W2560337053 hasAuthorship W2560337053A5002834603 @default.
- W2560337053 hasAuthorship W2560337053A5073696890 @default.
- W2560337053 hasAuthorship W2560337053A5091156524 @default.
- W2560337053 hasConcept C41008148 @default.
- W2560337053 hasConceptScore W2560337053C41008148 @default.
- W2560337053 hasLocation W25603370531 @default.
- W2560337053 hasOpenAccess W2560337053 @default.
- W2560337053 hasPrimaryLocation W25603370531 @default.
- W2560337053 hasRelatedWork W2049775471 @default.
- W2560337053 hasRelatedWork W2093578348 @default.
- W2560337053 hasRelatedWork W2350741829 @default.
- W2560337053 hasRelatedWork W2358668433 @default.
- W2560337053 hasRelatedWork W2376932109 @default.
- W2560337053 hasRelatedWork W2382290278 @default.
- W2560337053 hasRelatedWork W2390279801 @default.
- W2560337053 hasRelatedWork W2748952813 @default.
- W2560337053 hasRelatedWork W2899084033 @default.
- W2560337053 hasRelatedWork W3004735627 @default.
- W2560337053 isParatext "false" @default.
- W2560337053 isRetracted "false" @default.
- W2560337053 magId "2560337053" @default.
- W2560337053 workType "article" @default.