Matches in SemOpenAlex for { <https://semopenalex.org/work/W2560463177> ?p ?o ?g. }
- W2560463177 endingPage "111" @default.
- W2560463177 startingPage "99" @default.
- W2560463177 abstract "Abstract Dry reforming of methane is one of the few chemical reactions which can effectively convert carbon dioxide (CO 2 ), a major green-house gas, into a valuable chemical precursor, syngas (a mixture of CO and H 2 ), that can be converted into chemicals and fuels via different synthesis routes such as the Fischer Tropsch synthesis. The inherent limitations of dry reforming reaction, for instance, rapid catalyst deactivation by coke deposition and the very high energy requirements, has restricted its use as a commercial technology. This study was performed to evaluate the potential of overcoming the limitations of dry reforming by integrating it with other commercial methane reforming technologies such as steam reforming and partial oxidation reforming in the context of industrial operating conditions. A thermodynamic and kinetic analysis of the combined reforming has been conducted using the software suite MATLAB ® . The aim of this complicated assessment is to identify optimized combination of the three reformers and also the corresponding operating conditions that would utilize significant amount of CO 2 while ensuring CO 2 fixation, minimum carbon formation and optimum energy requirements. The thermodynamic equilibrium product distribution calculations involved the Peng Robinson (PR), Redlich Kwong (RK) and Soave Redlich Kwong (SRK) equations of state (EOS) to identify the best EOS that accounts for the non-ideality associated with the high pressure operation. The study evaluated simultaneous effects of temperature (200 °C–1200 °C), pressure (1–20 bar) and feed mole ratios (of methane, steam, carbon dioxide and oxygen) on the equilibrium product distribution. The addition of oxygen and steam to dry reforming helped in decreasing energy requirements while simultaneously increasing the syngas yield ratio (H 2 :CO ratio). The numerical evaluation revealed an optimized operating condition of ∼750 °C at 1 bar pressure at a feed mole ratio CH 4 :H 2 O:O 2 :CO 2 of 1:0.4:0.3:1. For this optimization, the system boundaries were limited only to a reformer block without considering the upstream and dowstream processes. At this optimized condition, the carbon deposition was eliminated and the CO 2 conversion was observed to be 47.84% with an energy requirement of 180.26 kJ. The study is further extended to include kinetic analysis of combined dry and steam reforming of methane. The preliminary findings of kinetic evaluation indicated an excellent agreement between combined kinetic model with the thermodynamic equilibrium results." @default.
- W2560463177 created "2016-12-16" @default.
- W2560463177 creator A5008221221 @default.
- W2560463177 creator A5015323057 @default.
- W2560463177 creator A5017145341 @default.
- W2560463177 creator A5043136718 @default.
- W2560463177 creator A5085441514 @default.
- W2560463177 date "2017-01-01" @default.
- W2560463177 modified "2023-10-03" @default.
- W2560463177 title "A combined thermo-kinetic analysis of various methane reforming technologies: Comparison with dry reforming" @default.
- W2560463177 cites W1511530558 @default.
- W2560463177 cites W162430827 @default.
- W2560463177 cites W173270170 @default.
- W2560463177 cites W1964436930 @default.
- W2560463177 cites W1966590765 @default.
- W2560463177 cites W1968952778 @default.
- W2560463177 cites W1969324999 @default.
- W2560463177 cites W1981986735 @default.
- W2560463177 cites W1982829331 @default.
- W2560463177 cites W1993432533 @default.
- W2560463177 cites W2011098172 @default.
- W2560463177 cites W2013395151 @default.
- W2560463177 cites W2023175489 @default.
- W2560463177 cites W2026039658 @default.
- W2560463177 cites W2034683145 @default.
- W2560463177 cites W2034902756 @default.
- W2560463177 cites W2041845739 @default.
- W2560463177 cites W2045559888 @default.
- W2560463177 cites W2047355492 @default.
- W2560463177 cites W2049204369 @default.
- W2560463177 cites W2049964243 @default.
- W2560463177 cites W2053701956 @default.
- W2560463177 cites W2055396378 @default.
- W2560463177 cites W2057169287 @default.
- W2560463177 cites W2060876993 @default.
- W2560463177 cites W2069471902 @default.
- W2560463177 cites W2069582848 @default.
- W2560463177 cites W2089483698 @default.
- W2560463177 cites W2092115099 @default.
- W2560463177 cites W2094818470 @default.
- W2560463177 cites W2105744137 @default.
- W2560463177 cites W2106857129 @default.
- W2560463177 cites W2129288307 @default.
- W2560463177 cites W2142428422 @default.
- W2560463177 cites W2143844135 @default.
- W2560463177 cites W2206597992 @default.
- W2560463177 cites W2274592315 @default.
- W2560463177 cites W2318063443 @default.
- W2560463177 cites W2320970713 @default.
- W2560463177 cites W2325752781 @default.
- W2560463177 cites W234089688 @default.
- W2560463177 cites W2341146964 @default.
- W2560463177 cites W3123344006 @default.
- W2560463177 doi "https://doi.org/10.1016/j.jcou.2016.11.008" @default.
- W2560463177 hasPublicationYear "2017" @default.
- W2560463177 type Work @default.
- W2560463177 sameAs 2560463177 @default.
- W2560463177 citedByCount "78" @default.
- W2560463177 countsByYear W25604631772017 @default.
- W2560463177 countsByYear W25604631772018 @default.
- W2560463177 countsByYear W25604631772019 @default.
- W2560463177 countsByYear W25604631772020 @default.
- W2560463177 countsByYear W25604631772021 @default.
- W2560463177 countsByYear W25604631772022 @default.
- W2560463177 countsByYear W25604631772023 @default.
- W2560463177 crossrefType "journal-article" @default.
- W2560463177 hasAuthorship W2560463177A5008221221 @default.
- W2560463177 hasAuthorship W2560463177A5015323057 @default.
- W2560463177 hasAuthorship W2560463177A5017145341 @default.
- W2560463177 hasAuthorship W2560463177A5043136718 @default.
- W2560463177 hasAuthorship W2560463177A5085441514 @default.
- W2560463177 hasConcept C121332964 @default.
- W2560463177 hasConcept C127413603 @default.
- W2560463177 hasConcept C135889238 @default.
- W2560463177 hasConcept C161790260 @default.
- W2560463177 hasConcept C178790620 @default.
- W2560463177 hasConcept C185592680 @default.
- W2560463177 hasConcept C193015443 @default.
- W2560463177 hasConcept C194439259 @default.
- W2560463177 hasConcept C202189072 @default.
- W2560463177 hasConcept C21880701 @default.
- W2560463177 hasConcept C39432304 @default.
- W2560463177 hasConcept C42360764 @default.
- W2560463177 hasConcept C43535742 @default.
- W2560463177 hasConcept C516920438 @default.
- W2560463177 hasConcept C548081761 @default.
- W2560463177 hasConcept C62520636 @default.
- W2560463177 hasConcept C7304416 @default.
- W2560463177 hasConceptScore W2560463177C121332964 @default.
- W2560463177 hasConceptScore W2560463177C127413603 @default.
- W2560463177 hasConceptScore W2560463177C135889238 @default.
- W2560463177 hasConceptScore W2560463177C161790260 @default.
- W2560463177 hasConceptScore W2560463177C178790620 @default.
- W2560463177 hasConceptScore W2560463177C185592680 @default.
- W2560463177 hasConceptScore W2560463177C193015443 @default.
- W2560463177 hasConceptScore W2560463177C194439259 @default.
- W2560463177 hasConceptScore W2560463177C202189072 @default.
- W2560463177 hasConceptScore W2560463177C21880701 @default.