Matches in SemOpenAlex for { <https://semopenalex.org/work/W2560482685> ?p ?o ?g. }
- W2560482685 abstract "Phenotyping local crop cultivars is becoming more and more important, as they are an important genetic source for breeding - especially in regard to inherent root system architectures. Machine learning algorithms are promising tools to assist in the analysis of complex data sets; novel approaches are need to apply them on root phenotyping data of mature plants. A greenhouse experiment was conducted in large, sand-filled columns to differentiate 16 European Pisum sativum cultivars based on 36 manually derived root traits. Through combining random forest and support vector machine models, machine learning algorithms were successfully used for unbiased identification of most distinguishing root traits and subsequent pairwise cultivar differentiation. Up to 86% of pea cultivar pairs could be distinguished based on top five important root traits (Timp5) - Timp5 differed widely between cultivar pairs. Selecting top important root traits (Timp) provided a significant improved classification compared to using all available traits or randomly selected trait sets. The most frequent Timp of mature pea cultivars was total surface area of lateral roots originating from tap root segments at 0-5 cm depth. The high classification rate implies that culturing did not lead to a major loss of variability in root system architecture in the studied pea cultivars. Our results illustrate the potential of machine learning approaches for unbiased (root) trait selection and cultivar classification based on rather small, complex phenotypic data sets derived from pot experiments. Powerful statistical approaches are essential to make use of the increasing amount of (root) phenotyping information, integrating the complex trait sets describing crop cultivars." @default.
- W2560482685 created "2016-12-16" @default.
- W2560482685 creator A5006016100 @default.
- W2560482685 creator A5046428562 @default.
- W2560482685 creator A5051932079 @default.
- W2560482685 date "2016-12-06" @default.
- W2560482685 modified "2023-10-17" @default.
- W2560482685 title "Phenotyping: Using Machine Learning for Improved Pairwise Genotype Classification Based on Root Traits" @default.
- W2560482685 cites W1495247761 @default.
- W2560482685 cites W1502810280 @default.
- W2560482685 cites W1505191356 @default.
- W2560482685 cites W1520812622 @default.
- W2560482685 cites W1555810258 @default.
- W2560482685 cites W166622706 @default.
- W2560482685 cites W1693171120 @default.
- W2560482685 cites W1800724332 @default.
- W2560482685 cites W1882168827 @default.
- W2560482685 cites W1912973666 @default.
- W2560482685 cites W1973290541 @default.
- W2560482685 cites W1976367620 @default.
- W2560482685 cites W1981568023 @default.
- W2560482685 cites W1986858673 @default.
- W2560482685 cites W1997301339 @default.
- W2560482685 cites W1998686312 @default.
- W2560482685 cites W1998961445 @default.
- W2560482685 cites W2002044824 @default.
- W2560482685 cites W2007022499 @default.
- W2560482685 cites W2010122277 @default.
- W2560482685 cites W2016151605 @default.
- W2560482685 cites W2017101219 @default.
- W2560482685 cites W2019482671 @default.
- W2560482685 cites W2019583087 @default.
- W2560482685 cites W2030732023 @default.
- W2560482685 cites W2032510388 @default.
- W2560482685 cites W2034489756 @default.
- W2560482685 cites W2048846045 @default.
- W2560482685 cites W2054100930 @default.
- W2560482685 cites W2057890665 @default.
- W2560482685 cites W2065614902 @default.
- W2560482685 cites W2069317808 @default.
- W2560482685 cites W2069914810 @default.
- W2560482685 cites W2070230130 @default.
- W2560482685 cites W2076498607 @default.
- W2560482685 cites W2082795366 @default.
- W2560482685 cites W2085657320 @default.
- W2560482685 cites W2086350419 @default.
- W2560482685 cites W2091915909 @default.
- W2560482685 cites W2095344194 @default.
- W2560482685 cites W2096212927 @default.
- W2560482685 cites W2096291512 @default.
- W2560482685 cites W2107829583 @default.
- W2560482685 cites W2119305544 @default.
- W2560482685 cites W2121121870 @default.
- W2560482685 cites W2123029610 @default.
- W2560482685 cites W2125557175 @default.
- W2560482685 cites W2126278401 @default.
- W2560482685 cites W2127070009 @default.
- W2560482685 cites W2129787196 @default.
- W2560482685 cites W2132761588 @default.
- W2560482685 cites W2138241555 @default.
- W2560482685 cites W2141133553 @default.
- W2560482685 cites W2143481518 @default.
- W2560482685 cites W2144404763 @default.
- W2560482685 cites W2149494055 @default.
- W2560482685 cites W2150700542 @default.
- W2560482685 cites W2150725272 @default.
- W2560482685 cites W2151075368 @default.
- W2560482685 cites W2152532716 @default.
- W2560482685 cites W2156249450 @default.
- W2560482685 cites W2156472837 @default.
- W2560482685 cites W2157779872 @default.
- W2560482685 cites W2159636883 @default.
- W2560482685 cites W2160858601 @default.
- W2560482685 cites W2161558103 @default.
- W2560482685 cites W2161796821 @default.
- W2560482685 cites W2169214623 @default.
- W2560482685 cites W2169829696 @default.
- W2560482685 cites W2169997758 @default.
- W2560482685 cites W2170918433 @default.
- W2560482685 cites W2171091820 @default.
- W2560482685 cites W2186350550 @default.
- W2560482685 cites W2270033646 @default.
- W2560482685 cites W2272725133 @default.
- W2560482685 cites W4239510810 @default.
- W2560482685 doi "https://doi.org/10.3389/fpls.2016.01864" @default.
- W2560482685 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/5138212" @default.
- W2560482685 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/27999587" @default.
- W2560482685 hasPublicationYear "2016" @default.
- W2560482685 type Work @default.
- W2560482685 sameAs 2560482685 @default.
- W2560482685 citedByCount "23" @default.
- W2560482685 countsByYear W25604826852017 @default.
- W2560482685 countsByYear W25604826852018 @default.
- W2560482685 countsByYear W25604826852019 @default.
- W2560482685 countsByYear W25604826852020 @default.
- W2560482685 countsByYear W25604826852021 @default.
- W2560482685 countsByYear W25604826852022 @default.
- W2560482685 countsByYear W25604826852023 @default.
- W2560482685 crossrefType "journal-article" @default.
- W2560482685 hasAuthorship W2560482685A5006016100 @default.