Matches in SemOpenAlex for { <https://semopenalex.org/work/W2560487226> ?p ?o ?g. }
- W2560487226 endingPage "e345" @default.
- W2560487226 startingPage "e345" @default.
- W2560487226 abstract "Technological applications of novel metastable materials are frequently inhibited by abundant defects residing in these materials. Using first-principles methods, we investigate the defect thermodynamics and phase segregation in the technologically important metastable alloy GaAsBi. Our calculations predict defect energy levels in good agreement with those from numerous previous experiments and clarify the defect structures giving rise to these levels. We find that vacancies in some charge states become metastable or unstable with respect to antisite formation, and this instability is a general characteristic of zincblende semiconductors with small ionicity. The dominant point defects that degrade the electronic and optical performances are predicted to be AsGa, BiGa, AsGa+BiAs, BiGa+BiAs, VGa and VGa+BiAs, of which the first four and last two defects are minority-electron and minority-hole traps, respectively. VGa is also observed to have a critical role in controlling metastable Bi supersaturation by mediating Bi diffusion and clustering. To reduce the influences of these deleterious defects, we suggest shifting the growth away from an As-rich condition and/or using hydrogen passivation to reduce the minority-carrier traps. We expect this work to aid in the applications of GaAsBi for novel electronic and optoelectronic devices and to illuminate the control of deleterious defects in other metastable materials. Crystal defects can stop metastable alloys from working in novel devices, but a new study predicts ways to minimize such faults. When alloyed with bismuth atoms, gallium arsenide semiconductors could endow devices with unprecedented properties, such as high efficiency for high-power infrared laser diodes and temperature-insensitive performance for electronic devices. To reduce the defects caused by bismuth alloying including unwanted bismuth clusters that arise in typical fabrications, Guangfu Luo and Dane Morgan from the University of Wisconsin-Madison in the USA studied various possible alloy defects in the bismuth-containing gallium arsenide using density functional theory calculations. Their investigations revealed the dominant defect trap states and helped the team propose new ideas, including hydrogen passivation and new growth conditions, to reduce the populations of deleterious defects. Ab initio calculations reveal that defects AsGa, BiGa, AsGa+BiAs and BiGa+BiAs are the dominant minority-electron traps and defects VGa and VGa+BiAs are the dominant minority-hole traps in the metastable alloy GaAsBi grown under As-rich condition. Changing the growth away from the As-rich condition and/or using hydrogen passivation are suggested to reduce the deleterious effects of these defects." @default.
- W2560487226 created "2016-12-16" @default.
- W2560487226 creator A5001538910 @default.
- W2560487226 creator A5005684838 @default.
- W2560487226 creator A5012184064 @default.
- W2560487226 creator A5028372112 @default.
- W2560487226 creator A5061694141 @default.
- W2560487226 creator A5068305513 @default.
- W2560487226 date "2017-01-01" @default.
- W2560487226 modified "2023-10-18" @default.
- W2560487226 title "Understanding and reducing deleterious defects in the metastable alloy GaAsBi" @default.
- W2560487226 cites W1664609036 @default.
- W2560487226 cites W1963934009 @default.
- W2560487226 cites W1967779367 @default.
- W2560487226 cites W1975427266 @default.
- W2560487226 cites W1976681781 @default.
- W2560487226 cites W1980358437 @default.
- W2560487226 cites W1981135736 @default.
- W2560487226 cites W1984561204 @default.
- W2560487226 cites W1985037920 @default.
- W2560487226 cites W1989660258 @default.
- W2560487226 cites W1995506766 @default.
- W2560487226 cites W1996204229 @default.
- W2560487226 cites W2007724415 @default.
- W2560487226 cites W2009977141 @default.
- W2560487226 cites W2011390159 @default.
- W2560487226 cites W2013501055 @default.
- W2560487226 cites W2017869140 @default.
- W2560487226 cites W2020472655 @default.
- W2560487226 cites W2026592970 @default.
- W2560487226 cites W2027963694 @default.
- W2560487226 cites W2033138573 @default.
- W2560487226 cites W2036159879 @default.
- W2560487226 cites W2038992739 @default.
- W2560487226 cites W2041561611 @default.
- W2560487226 cites W2043711375 @default.
- W2560487226 cites W2047407807 @default.
- W2560487226 cites W2050201530 @default.
- W2560487226 cites W2051754018 @default.
- W2560487226 cites W2054651482 @default.
- W2560487226 cites W2055357853 @default.
- W2560487226 cites W2056490593 @default.
- W2560487226 cites W2075371316 @default.
- W2560487226 cites W2079175180 @default.
- W2560487226 cites W2083108489 @default.
- W2560487226 cites W2083222334 @default.
- W2560487226 cites W2085093563 @default.
- W2560487226 cites W2088932443 @default.
- W2560487226 cites W2093884656 @default.
- W2560487226 cites W2114425363 @default.
- W2560487226 cites W2150112388 @default.
- W2560487226 cites W2165667802 @default.
- W2560487226 cites W2217645228 @default.
- W2560487226 cites W2230103647 @default.
- W2560487226 cites W2332251896 @default.
- W2560487226 cites W2334943893 @default.
- W2560487226 cites W2463606591 @default.
- W2560487226 cites W2478778389 @default.
- W2560487226 cites W2528198064 @default.
- W2560487226 cites W3102790859 @default.
- W2560487226 cites W562664655 @default.
- W2560487226 doi "https://doi.org/10.1038/am.2016.201" @default.
- W2560487226 hasPublicationYear "2017" @default.
- W2560487226 type Work @default.
- W2560487226 sameAs 2560487226 @default.
- W2560487226 citedByCount "24" @default.
- W2560487226 countsByYear W25604872262017 @default.
- W2560487226 countsByYear W25604872262018 @default.
- W2560487226 countsByYear W25604872262019 @default.
- W2560487226 countsByYear W25604872262020 @default.
- W2560487226 countsByYear W25604872262021 @default.
- W2560487226 countsByYear W25604872262022 @default.
- W2560487226 countsByYear W25604872262023 @default.
- W2560487226 crossrefType "journal-article" @default.
- W2560487226 hasAuthorship W2560487226A5001538910 @default.
- W2560487226 hasAuthorship W2560487226A5005684838 @default.
- W2560487226 hasAuthorship W2560487226A5012184064 @default.
- W2560487226 hasAuthorship W2560487226A5028372112 @default.
- W2560487226 hasAuthorship W2560487226A5061694141 @default.
- W2560487226 hasAuthorship W2560487226A5068305513 @default.
- W2560487226 hasBestOaLocation W25604872261 @default.
- W2560487226 hasConcept C108225325 @default.
- W2560487226 hasConcept C121332964 @default.
- W2560487226 hasConcept C159467904 @default.
- W2560487226 hasConcept C164675345 @default.
- W2560487226 hasConcept C171250308 @default.
- W2560487226 hasConcept C178790620 @default.
- W2560487226 hasConcept C181966813 @default.
- W2560487226 hasConcept C185592680 @default.
- W2560487226 hasConcept C191897082 @default.
- W2560487226 hasConcept C192562407 @default.
- W2560487226 hasConcept C26873012 @default.
- W2560487226 hasConcept C2779227376 @default.
- W2560487226 hasConcept C33574316 @default.
- W2560487226 hasConcept C49040817 @default.
- W2560487226 hasConcept C533668322 @default.
- W2560487226 hasConcept C89464430 @default.
- W2560487226 hasConceptScore W2560487226C108225325 @default.