Matches in SemOpenAlex for { <https://semopenalex.org/work/W2560647685> ?p ?o ?g. }
- W2560647685 endingPage "3526" @default.
- W2560647685 startingPage "3521" @default.
- W2560647685 abstract "Significance Deep neural networks are currently the most successful machine-learning technique for solving a variety of tasks, including language translation, image classification, and image generation. One weakness of such models is that, unlike humans, they are unable to learn multiple tasks sequentially. In this work we propose a practical solution to train such models sequentially by protecting the weights important for previous tasks. This approach, inspired by synaptic consolidation in neuroscience, enables state of the art results on multiple reinforcement learning problems experienced sequentially." @default.
- W2560647685 created "2016-12-16" @default.
- W2560647685 creator A5005349213 @default.
- W2560647685 creator A5010900024 @default.
- W2560647685 creator A5018191427 @default.
- W2560647685 creator A5031656858 @default.
- W2560647685 creator A5038813361 @default.
- W2560647685 creator A5039448321 @default.
- W2560647685 creator A5039497694 @default.
- W2560647685 creator A5043910056 @default.
- W2560647685 creator A5048551460 @default.
- W2560647685 creator A5050332749 @default.
- W2560647685 creator A5059552797 @default.
- W2560647685 creator A5060709021 @default.
- W2560647685 creator A5079415139 @default.
- W2560647685 creator A5089648583 @default.
- W2560647685 date "2017-03-14" @default.
- W2560647685 modified "2023-10-17" @default.
- W2560647685 title "Overcoming catastrophic forgetting in neural networks" @default.
- W2560647685 cites W1440335865 @default.
- W2560647685 cites W1884390770 @default.
- W2560647685 cites W1971037450 @default.
- W2560647685 cites W1979019425 @default.
- W2560647685 cites W1981184437 @default.
- W2560647685 cites W2036963181 @default.
- W2560647685 cites W2047057213 @default.
- W2560647685 cites W2047125104 @default.
- W2560647685 cites W2060277733 @default.
- W2560647685 cites W2061304498 @default.
- W2560647685 cites W2066783383 @default.
- W2560647685 cites W2067840211 @default.
- W2560647685 cites W2077052576 @default.
- W2560647685 cites W2078179989 @default.
- W2560647685 cites W2088321899 @default.
- W2560647685 cites W2101493843 @default.
- W2560647685 cites W2110048843 @default.
- W2560647685 cites W2111051539 @default.
- W2560647685 cites W2111534506 @default.
- W2560647685 cites W2129386380 @default.
- W2560647685 cites W2145339207 @default.
- W2560647685 cites W2151137320 @default.
- W2560647685 cites W2168342951 @default.
- W2560647685 cites W2174227032 @default.
- W2560647685 cites W2424347275 @default.
- W2560647685 cites W2919115771 @default.
- W2560647685 cites W3103780890 @default.
- W2560647685 doi "https://doi.org/10.1073/pnas.1611835114" @default.
- W2560647685 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/5380101" @default.
- W2560647685 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/28292907" @default.
- W2560647685 hasPublicationYear "2017" @default.
- W2560647685 type Work @default.
- W2560647685 sameAs 2560647685 @default.
- W2560647685 citedByCount "3089" @default.
- W2560647685 countsByYear W25606476852015 @default.
- W2560647685 countsByYear W25606476852016 @default.
- W2560647685 countsByYear W25606476852017 @default.
- W2560647685 countsByYear W25606476852018 @default.
- W2560647685 countsByYear W25606476852019 @default.
- W2560647685 countsByYear W25606476852020 @default.
- W2560647685 countsByYear W25606476852021 @default.
- W2560647685 countsByYear W25606476852022 @default.
- W2560647685 countsByYear W25606476852023 @default.
- W2560647685 crossrefType "journal-article" @default.
- W2560647685 hasAuthorship W2560647685A5005349213 @default.
- W2560647685 hasAuthorship W2560647685A5010900024 @default.
- W2560647685 hasAuthorship W2560647685A5018191427 @default.
- W2560647685 hasAuthorship W2560647685A5031656858 @default.
- W2560647685 hasAuthorship W2560647685A5038813361 @default.
- W2560647685 hasAuthorship W2560647685A5039448321 @default.
- W2560647685 hasAuthorship W2560647685A5039497694 @default.
- W2560647685 hasAuthorship W2560647685A5043910056 @default.
- W2560647685 hasAuthorship W2560647685A5048551460 @default.
- W2560647685 hasAuthorship W2560647685A5050332749 @default.
- W2560647685 hasAuthorship W2560647685A5059552797 @default.
- W2560647685 hasAuthorship W2560647685A5060709021 @default.
- W2560647685 hasAuthorship W2560647685A5079415139 @default.
- W2560647685 hasAuthorship W2560647685A5089648583 @default.
- W2560647685 hasBestOaLocation W25606476851 @default.
- W2560647685 hasConcept C108583219 @default.
- W2560647685 hasConcept C119857082 @default.
- W2560647685 hasConcept C121955636 @default.
- W2560647685 hasConcept C136197465 @default.
- W2560647685 hasConcept C144133560 @default.
- W2560647685 hasConcept C154945302 @default.
- W2560647685 hasConcept C15744967 @default.
- W2560647685 hasConcept C169760540 @default.
- W2560647685 hasConcept C180747234 @default.
- W2560647685 hasConcept C2776014549 @default.
- W2560647685 hasConcept C2781161787 @default.
- W2560647685 hasConcept C2984842247 @default.
- W2560647685 hasConcept C41008148 @default.
- W2560647685 hasConcept C48455012 @default.
- W2560647685 hasConcept C50644808 @default.
- W2560647685 hasConcept C7149132 @default.
- W2560647685 hasConcept C97541855 @default.
- W2560647685 hasConceptScore W2560647685C108583219 @default.
- W2560647685 hasConceptScore W2560647685C119857082 @default.
- W2560647685 hasConceptScore W2560647685C121955636 @default.