Matches in SemOpenAlex for { <https://semopenalex.org/work/W2560751352> ?p ?o ?g. }
Showing items 1 to 52 of
52
with 100 items per page.
- W2560751352 abstract "Natural materials are able to achieve a wide range and combination of properties through the arrangement of the material’s components. These biological materials are often more effective and better suited to their function than engineered materials, even with the use of a limited set of components. By mimicking a biological material’s component arrangement, or structure, man-made bioinspired materials can achieve improved properties as well. While considerable research has been conducted on biological materials, identifying the beneficial structural design principles can be time-intensive for a materials designer. Previously, a text mining algorithm and tool were developed to quickly extract passages describing property-specific structural design principles from a corpus of materials journals. Although the tool identified over 90% of the principles (recall), many irrelevant passages were returned as well with approximately 32% of the passages being useful (precision). This paper discusses approaches to refine the program in order to improve precision. The text classification techniques of machine learning classifiers, statistical features, and part-of-speech analyses, are evaluated for effectiveness in sorting passages into relevant and irrelevant classes. Manual identification of patterns in the returned passages is also employed to create a rule-based method, resulting in an updated algorithm. An evaluation comparing the revised algorithm to the previously developed algorithm is completed using a new set of journal articles. Although the revised algorithm’s recall was reduced to 80%, the precision increased to 45% and the number of returned passages was reduced by 22%, allowing a materials designer to more quickly identify potentially useful structures. The paper concludes with suggestions to improve the program’s usefulness and scope for future work." @default.
- W2560751352 created "2016-12-16" @default.
- W2560751352 creator A5012811882 @default.
- W2560751352 creator A5064447152 @default.
- W2560751352 creator A5072768006 @default.
- W2560751352 date "2016-08-21" @default.
- W2560751352 modified "2023-09-25" @default.
- W2560751352 title "Bioinspired Materials Design: An Assessment of Methods to Improve a Text Mining Algorithm for Identifying Biological Material Structural Design Principles" @default.
- W2560751352 doi "https://doi.org/10.1115/detc2016-59144" @default.
- W2560751352 hasPublicationYear "2016" @default.
- W2560751352 type Work @default.
- W2560751352 sameAs 2560751352 @default.
- W2560751352 citedByCount "3" @default.
- W2560751352 countsByYear W25607513522018 @default.
- W2560751352 countsByYear W25607513522020 @default.
- W2560751352 crossrefType "proceedings-article" @default.
- W2560751352 hasAuthorship W2560751352A5012811882 @default.
- W2560751352 hasAuthorship W2560751352A5064447152 @default.
- W2560751352 hasAuthorship W2560751352A5072768006 @default.
- W2560751352 hasConcept C11413529 @default.
- W2560751352 hasConcept C124101348 @default.
- W2560751352 hasConcept C41008148 @default.
- W2560751352 hasConceptScore W2560751352C11413529 @default.
- W2560751352 hasConceptScore W2560751352C124101348 @default.
- W2560751352 hasConceptScore W2560751352C41008148 @default.
- W2560751352 hasLocation W25607513521 @default.
- W2560751352 hasOpenAccess W2560751352 @default.
- W2560751352 hasPrimaryLocation W25607513521 @default.
- W2560751352 hasRelatedWork W1990015990 @default.
- W2560751352 hasRelatedWork W1999363451 @default.
- W2560751352 hasRelatedWork W2028757406 @default.
- W2560751352 hasRelatedWork W2049618031 @default.
- W2560751352 hasRelatedWork W2266532925 @default.
- W2560751352 hasRelatedWork W2277041059 @default.
- W2560751352 hasRelatedWork W2560270726 @default.
- W2560751352 hasRelatedWork W2625493762 @default.
- W2560751352 hasRelatedWork W2703857494 @default.
- W2560751352 hasRelatedWork W2784880644 @default.
- W2560751352 hasRelatedWork W2807608986 @default.
- W2560751352 hasRelatedWork W2958522796 @default.
- W2560751352 hasRelatedWork W3002037334 @default.
- W2560751352 hasRelatedWork W3034379213 @default.
- W2560751352 hasRelatedWork W3034420245 @default.
- W2560751352 hasRelatedWork W3034984089 @default.
- W2560751352 hasRelatedWork W3183971897 @default.
- W2560751352 hasRelatedWork W3674686 @default.
- W2560751352 hasRelatedWork W88725129 @default.
- W2560751352 hasRelatedWork W975068155 @default.
- W2560751352 isParatext "false" @default.
- W2560751352 isRetracted "false" @default.
- W2560751352 magId "2560751352" @default.
- W2560751352 workType "article" @default.