Matches in SemOpenAlex for { <https://semopenalex.org/work/W2560778841> ?p ?o ?g. }
- W2560778841 endingPage "123" @default.
- W2560778841 startingPage "71" @default.
- W2560778841 abstract "Highly frequent in language and communication, metaphor represents a significant challenge for Natural Language Processing (NLP) applications. Computational work on metaphor has traditionally evolved around the use of hand-coded knowledge, making the systems hard to scale. Recent years have witnessed a rise in statistical approaches to metaphor processing. However, these approaches often require extensive human annotation effort and are predominantly evaluated within a limited domain. In contrast, we experiment with weakly supervised and unsupervised techniques—with little or no annotation—to generalize higher-level mechanisms of metaphor from distributional properties of concepts. We investigate different levels and types of supervision (learning from linguistic examples vs. learning from a given set of metaphorical mappings vs. learning without annotation) in flat and hierarchical, unconstrained and constrained clustering settings. Our aim is to identify the optimal type of supervision for a learning algorithm that discovers patterns of metaphorical association from text. In order to investigate the scalability and adaptability of our models, we applied them to data in three languages from different language groups—English, Spanish, and Russian—achieving state-of-the-art results with little supervision. Finally, we demonstrate that statistical methods can facilitate and scale up cross-linguistic research on metaphor." @default.
- W2560778841 created "2016-12-16" @default.
- W2560778841 creator A5016184654 @default.
- W2560778841 creator A5018668652 @default.
- W2560778841 creator A5065760252 @default.
- W2560778841 creator A5089362867 @default.
- W2560778841 creator A5091346638 @default.
- W2560778841 date "2017-04-01" @default.
- W2560778841 modified "2023-09-26" @default.
- W2560778841 title "Multilingual Metaphor Processing: Experiments with Semi-Supervised and Unsupervised Learning" @default.
- W2560778841 cites W1561412240 @default.
- W2560778841 cites W1568793342 @default.
- W2560778841 cites W1665873259 @default.
- W2560778841 cites W19387893 @default.
- W2560778841 cites W1969075342 @default.
- W2560778841 cites W1969304694 @default.
- W2560778841 cites W1973507078 @default.
- W2560778841 cites W1980108377 @default.
- W2560778841 cites W1996908104 @default.
- W2560778841 cites W1999471173 @default.
- W2560778841 cites W2002373856 @default.
- W2560778841 cites W2002599823 @default.
- W2560778841 cites W2015218636 @default.
- W2560778841 cites W2016381774 @default.
- W2560778841 cites W2017875634 @default.
- W2560778841 cites W2022023435 @default.
- W2560778841 cites W2026161499 @default.
- W2560778841 cites W2032964561 @default.
- W2560778841 cites W2033778615 @default.
- W2560778841 cites W2037101809 @default.
- W2560778841 cites W2041385925 @default.
- W2560778841 cites W2042965063 @default.
- W2560778841 cites W2049568808 @default.
- W2560778841 cites W2050712820 @default.
- W2560778841 cites W2050797400 @default.
- W2560778841 cites W2052790819 @default.
- W2560778841 cites W2057089846 @default.
- W2560778841 cites W2069063704 @default.
- W2560778841 cites W2075123415 @default.
- W2560778841 cites W2079642762 @default.
- W2560778841 cites W2106341990 @default.
- W2560778841 cites W2107241511 @default.
- W2560778841 cites W2109057934 @default.
- W2560778841 cites W2110114082 @default.
- W2560778841 cites W2111112790 @default.
- W2560778841 cites W2116438410 @default.
- W2560778841 cites W2117999309 @default.
- W2560778841 cites W2121947440 @default.
- W2560778841 cites W2123631030 @default.
- W2560778841 cites W2127229940 @default.
- W2560778841 cites W2129227538 @default.
- W2560778841 cites W2130810407 @default.
- W2560778841 cites W2132914434 @default.
- W2560778841 cites W2134657122 @default.
- W2560778841 cites W2137820941 @default.
- W2560778841 cites W2143486485 @default.
- W2560778841 cites W2143801939 @default.
- W2560778841 cites W2150632194 @default.
- W2560778841 cites W2160936694 @default.
- W2560778841 cites W2166816808 @default.
- W2560778841 cites W2170340596 @default.
- W2560778841 cites W2181830759 @default.
- W2560778841 cites W2250587641 @default.
- W2560778841 cites W2250915238 @default.
- W2560778841 cites W2294712878 @default.
- W2560778841 cites W2327592952 @default.
- W2560778841 cites W2397081152 @default.
- W2560778841 cites W2775631589 @default.
- W2560778841 cites W4237791300 @default.
- W2560778841 cites W4239510810 @default.
- W2560778841 cites W4246980150 @default.
- W2560778841 doi "https://doi.org/10.1162/coli_a_00275" @default.
- W2560778841 hasPublicationYear "2017" @default.
- W2560778841 type Work @default.
- W2560778841 sameAs 2560778841 @default.
- W2560778841 citedByCount "30" @default.
- W2560778841 countsByYear W25607788412017 @default.
- W2560778841 countsByYear W25607788412018 @default.
- W2560778841 countsByYear W25607788412019 @default.
- W2560778841 countsByYear W25607788412020 @default.
- W2560778841 countsByYear W25607788412021 @default.
- W2560778841 countsByYear W25607788412022 @default.
- W2560778841 countsByYear W25607788412023 @default.
- W2560778841 crossrefType "journal-article" @default.
- W2560778841 hasAuthorship W2560778841A5016184654 @default.
- W2560778841 hasAuthorship W2560778841A5018668652 @default.
- W2560778841 hasAuthorship W2560778841A5065760252 @default.
- W2560778841 hasAuthorship W2560778841A5089362867 @default.
- W2560778841 hasAuthorship W2560778841A5091346638 @default.
- W2560778841 hasBestOaLocation W25607788411 @default.
- W2560778841 hasConcept C134306372 @default.
- W2560778841 hasConcept C138885662 @default.
- W2560778841 hasConcept C154945302 @default.
- W2560778841 hasConcept C177264268 @default.
- W2560778841 hasConcept C177606310 @default.
- W2560778841 hasConcept C18903297 @default.
- W2560778841 hasConcept C199360897 @default.
- W2560778841 hasConcept C204321447 @default.