Matches in SemOpenAlex for { <https://semopenalex.org/work/W2560864178> ?p ?o ?g. }
Showing items 1 to 76 of
76
with 100 items per page.
- W2560864178 abstract "Given an arbitrary graph $G$ we study the chromatic number of a random subgraph $G_{1/2}$ obtained from $G$ by removing each edge independently with probability $1/2$. Studying $chi(G_{1/2})$ has been suggested by Bukh~cite{Bukh}, who asked whether $mathbb{E}[chi(G_{1/2})] geq Omega( chi(G)/log(chi(G)))$ holds for all graphs $G$. In this paper we show that for any graph $G$ with chromatic number $k = chi(G)$ and for all $d leq k^{1/3}$ it holds that $Pr[chi(G_{1/2}) leq d] < exp left(- Omegaleft(frac{k(k-d^3)}{d^3}right)right)$. In particular, $Pr[G_{1/2} text{ is bipartite}] < exp left(- Omega left(k^2 right)right)$. The later bound is tight up to a constant in $Omega(cdot)$, and is attained when $G$ is the complete graph on $k$ vertices. As a technical lemma, that may be of independent interest, we prove that if in emph{any} $d^3$ coloring of the vertices of $G$ there are at least $t$ monochromatic edges, then $Pr[chi(G_{1/2}) leq d] < e^{- Omegaleft(tright)}$. We also prove that for any graph $G$ with chromatic number $k = chi(G)$ and independence number $alpha(G) leq O(n/k)$ it holds that $mathbb{E}[chi(G_{1/2})] geq Omega left( k/log(k) right)$. This gives a positive answer to the question of Bukh for a large family of graphs." @default.
- W2560864178 created "2017-01-06" @default.
- W2560864178 creator A5028165107 @default.
- W2560864178 date "2016-12-13" @default.
- W2560864178 modified "2023-09-27" @default.
- W2560864178 title "On Coloring Random Subgraphs of a Fixed Graph." @default.
- W2560864178 cites W1991445030 @default.
- W2560864178 cites W2002045419 @default.
- W2560864178 cites W2083459869 @default.
- W2560864178 cites W2098298439 @default.
- W2560864178 cites W2110089205 @default.
- W2560864178 cites W2110936203 @default.
- W2560864178 cites W2118601530 @default.
- W2560864178 cites W2905110430 @default.
- W2560864178 cites W3100974711 @default.
- W2560864178 cites W3143219376 @default.
- W2560864178 cites W788200807 @default.
- W2560864178 hasPublicationYear "2016" @default.
- W2560864178 type Work @default.
- W2560864178 sameAs 2560864178 @default.
- W2560864178 citedByCount "1" @default.
- W2560864178 countsByYear W25608641782021 @default.
- W2560864178 crossrefType "posted-content" @default.
- W2560864178 hasAuthorship W2560864178A5028165107 @default.
- W2560864178 hasConcept C114614502 @default.
- W2560864178 hasConcept C118615104 @default.
- W2560864178 hasConcept C121332964 @default.
- W2560864178 hasConcept C132525143 @default.
- W2560864178 hasConcept C18903297 @default.
- W2560864178 hasConcept C197657726 @default.
- W2560864178 hasConcept C2777759810 @default.
- W2560864178 hasConcept C2779557605 @default.
- W2560864178 hasConcept C2984853995 @default.
- W2560864178 hasConcept C33923547 @default.
- W2560864178 hasConcept C46757340 @default.
- W2560864178 hasConcept C62520636 @default.
- W2560864178 hasConcept C86803240 @default.
- W2560864178 hasConceptScore W2560864178C114614502 @default.
- W2560864178 hasConceptScore W2560864178C118615104 @default.
- W2560864178 hasConceptScore W2560864178C121332964 @default.
- W2560864178 hasConceptScore W2560864178C132525143 @default.
- W2560864178 hasConceptScore W2560864178C18903297 @default.
- W2560864178 hasConceptScore W2560864178C197657726 @default.
- W2560864178 hasConceptScore W2560864178C2777759810 @default.
- W2560864178 hasConceptScore W2560864178C2779557605 @default.
- W2560864178 hasConceptScore W2560864178C2984853995 @default.
- W2560864178 hasConceptScore W2560864178C33923547 @default.
- W2560864178 hasConceptScore W2560864178C46757340 @default.
- W2560864178 hasConceptScore W2560864178C62520636 @default.
- W2560864178 hasConceptScore W2560864178C86803240 @default.
- W2560864178 hasLocation W25608641781 @default.
- W2560864178 hasOpenAccess W2560864178 @default.
- W2560864178 hasPrimaryLocation W25608641781 @default.
- W2560864178 hasRelatedWork W1492115267 @default.
- W2560864178 hasRelatedWork W2225873318 @default.
- W2560864178 hasRelatedWork W2296619017 @default.
- W2560864178 hasRelatedWork W2734532595 @default.
- W2560864178 hasRelatedWork W2792747111 @default.
- W2560864178 hasRelatedWork W2900103943 @default.
- W2560864178 hasRelatedWork W2950207099 @default.
- W2560864178 hasRelatedWork W2951218950 @default.
- W2560864178 hasRelatedWork W2951550992 @default.
- W2560864178 hasRelatedWork W2952029290 @default.
- W2560864178 hasRelatedWork W2963584628 @default.
- W2560864178 hasRelatedWork W2963646574 @default.
- W2560864178 hasRelatedWork W2989234367 @default.
- W2560864178 hasRelatedWork W2998308975 @default.
- W2560864178 hasRelatedWork W3041357743 @default.
- W2560864178 hasRelatedWork W3099622868 @default.
- W2560864178 hasRelatedWork W3113072641 @default.
- W2560864178 hasRelatedWork W3125848164 @default.
- W2560864178 hasRelatedWork W3198729730 @default.
- W2560864178 isParatext "false" @default.
- W2560864178 isRetracted "false" @default.
- W2560864178 magId "2560864178" @default.
- W2560864178 workType "article" @default.