Matches in SemOpenAlex for { <https://semopenalex.org/work/W2561211596> ?p ?o ?g. }
- W2561211596 endingPage "653" @default.
- W2561211596 startingPage "644" @default.
- W2561211596 abstract "Purpose To introduce the heterogeneous multiscale (Het MS ) model for Monte Carlo simulations of gold nanoparticle dose‐enhanced radiation therapy ( GNPT ), a model characterized by its varying levels of detail on different length scales within a single phantom; to apply the Het MS model in two different scenarios relevant for GNPT and to compare computed results with others published. Methods The Het MS model is implemented using an extended version of the EGS nrc user‐code egs_chamber; the extended code is tested and verified via comparisons with recently published data from independent GNP simulations. Two distinct scenarios for the Het MS model are then considered: (a) monoenergetic photon beams (20 keV to 1 MeV) incident on a cylinder (1 cm radius, 3 cm length); (b) isotropic point source (brachytherapy source spectra) at the center of a 2.5 cm radius sphere with gold nanoparticles ( GNP s) diffusing outwards from the center. Dose enhancement factors ( DEF s) are compared for different source energies, depths in phantom, gold concentrations, GNP sizes, and modeling assumptions, as well as with independently published values. Simulation efficiencies are investigated. Results The Het MS MC simulations account for the competing effects of photon fluence perturbation (due to gold in the scatter media) coupled with enhanced local energy deposition (due to modeling discrete GNP s within subvolumes). DEF s are most sensitive to these effects for the lower source energies, varying with distance from the source; DEF s below unity (i.e., dose decreases, not enhancements) can occur at energies relevant for brachytherapy. For example, in the cylinder scenario, the 20 keV photon source has a DEF of 3.1 near the phantom's surface, decreasing to less than unity by 0.7 cm depth (for 20 mg/g). Compared to discrete modeling of GNP s throughout the gold‐containing (treatment) volume, efficiencies are enhanced by up to a factor of 122 with the Het MS approach. For the spherical phantom, DEF s vary with time for diffusion, radionuclide, and radius; DEF s differ considerably from those computed using a widely applied analytic approach. Conclusions By combining geometric models of varying complexity on different length scales within a single simulation, the Het MS model can effectively account for both macroscopic and microscopic effects which must both be considered for accurate computation of energy deposition and DEF s for GNPT . Efficiency gains with the Het MS approach enable diverse calculations which would otherwise be prohibitively long. The Het MS model may be extended to diverse scenarios relevant for GNPT , providing further avenues for research and development." @default.
- W2561211596 created "2017-01-06" @default.
- W2561211596 creator A5000404812 @default.
- W2561211596 creator A5085384706 @default.
- W2561211596 date "2017-02-01" @default.
- W2561211596 modified "2023-10-16" @default.
- W2561211596 title "Heterogeneous multiscale Monte Carlo simulations for gold nanoparticle radiosensitization" @default.
- W2561211596 cites W1968256046 @default.
- W2561211596 cites W1983608028 @default.
- W2561211596 cites W1984036920 @default.
- W2561211596 cites W1986217883 @default.
- W2561211596 cites W1988513860 @default.
- W2561211596 cites W1993383448 @default.
- W2561211596 cites W2001509673 @default.
- W2561211596 cites W2002825508 @default.
- W2561211596 cites W2003336829 @default.
- W2561211596 cites W2014064317 @default.
- W2561211596 cites W2014117109 @default.
- W2561211596 cites W2015593026 @default.
- W2561211596 cites W2015727160 @default.
- W2561211596 cites W2016899512 @default.
- W2561211596 cites W2020170703 @default.
- W2561211596 cites W2027692850 @default.
- W2561211596 cites W2027731662 @default.
- W2561211596 cites W2034160350 @default.
- W2561211596 cites W2034483551 @default.
- W2561211596 cites W2036910758 @default.
- W2561211596 cites W2048673195 @default.
- W2561211596 cites W2056355209 @default.
- W2561211596 cites W2058418987 @default.
- W2561211596 cites W2068650143 @default.
- W2561211596 cites W2069763292 @default.
- W2561211596 cites W2077625603 @default.
- W2561211596 cites W2082750838 @default.
- W2561211596 cites W2109840939 @default.
- W2561211596 cites W2143799054 @default.
- W2561211596 cites W2145238798 @default.
- W2561211596 cites W2157951061 @default.
- W2561211596 cites W2178048599 @default.
- W2561211596 cites W2221383914 @default.
- W2561211596 cites W2262266062 @default.
- W2561211596 cites W2281658559 @default.
- W2561211596 cites W2301236431 @default.
- W2561211596 cites W2495835442 @default.
- W2561211596 cites W2548608032 @default.
- W2561211596 doi "https://doi.org/10.1002/mp.12061" @default.
- W2561211596 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/28001308" @default.
- W2561211596 hasPublicationYear "2017" @default.
- W2561211596 type Work @default.
- W2561211596 sameAs 2561211596 @default.
- W2561211596 citedByCount "38" @default.
- W2561211596 countsByYear W25612115962017 @default.
- W2561211596 countsByYear W25612115962018 @default.
- W2561211596 countsByYear W25612115962019 @default.
- W2561211596 countsByYear W25612115962020 @default.
- W2561211596 countsByYear W25612115962021 @default.
- W2561211596 countsByYear W25612115962023 @default.
- W2561211596 crossrefType "journal-article" @default.
- W2561211596 hasAuthorship W2561211596A5000404812 @default.
- W2561211596 hasAuthorship W2561211596A5085384706 @default.
- W2561211596 hasBestOaLocation W25612115962 @default.
- W2561211596 hasConcept C103783831 @default.
- W2561211596 hasConcept C104293457 @default.
- W2561211596 hasConcept C105795698 @default.
- W2561211596 hasConcept C120665830 @default.
- W2561211596 hasConcept C121332964 @default.
- W2561211596 hasConcept C126322002 @default.
- W2561211596 hasConcept C159317903 @default.
- W2561211596 hasConcept C178635117 @default.
- W2561211596 hasConcept C184050105 @default.
- W2561211596 hasConcept C19499675 @default.
- W2561211596 hasConcept C22078206 @default.
- W2561211596 hasConcept C2777416452 @default.
- W2561211596 hasConcept C2989005 @default.
- W2561211596 hasConcept C30475298 @default.
- W2561211596 hasConcept C33923547 @default.
- W2561211596 hasConcept C38652104 @default.
- W2561211596 hasConcept C41008148 @default.
- W2561211596 hasConcept C509974204 @default.
- W2561211596 hasConcept C520434653 @default.
- W2561211596 hasConcept C71924100 @default.
- W2561211596 hasConcept C75088862 @default.
- W2561211596 hasConceptScore W2561211596C103783831 @default.
- W2561211596 hasConceptScore W2561211596C104293457 @default.
- W2561211596 hasConceptScore W2561211596C105795698 @default.
- W2561211596 hasConceptScore W2561211596C120665830 @default.
- W2561211596 hasConceptScore W2561211596C121332964 @default.
- W2561211596 hasConceptScore W2561211596C126322002 @default.
- W2561211596 hasConceptScore W2561211596C159317903 @default.
- W2561211596 hasConceptScore W2561211596C178635117 @default.
- W2561211596 hasConceptScore W2561211596C184050105 @default.
- W2561211596 hasConceptScore W2561211596C19499675 @default.
- W2561211596 hasConceptScore W2561211596C22078206 @default.
- W2561211596 hasConceptScore W2561211596C2777416452 @default.
- W2561211596 hasConceptScore W2561211596C2989005 @default.
- W2561211596 hasConceptScore W2561211596C30475298 @default.
- W2561211596 hasConceptScore W2561211596C33923547 @default.
- W2561211596 hasConceptScore W2561211596C38652104 @default.