Matches in SemOpenAlex for { <https://semopenalex.org/work/W2561241904> ?p ?o ?g. }
Showing items 1 to 56 of
56
with 100 items per page.
- W2561241904 abstract "Ponte Academic JournalDec 2016, Volume 72, Issue 12 CLASSIFICATION OF TEXTUAL DOCUMENTS IN R USING KNN ALGORITHMAuthor(s): Aiman Moldagulova ,Rosnafisah Bte. SulaimanJ. Ponte - Dec 2016 - Volume 72 - Issue 12 doi: 10.21506/j.ponte.2016.12.35 Abstract:In the recent years the exponential growth of generation of textual documents and the emergent need to structure them increase the attention to the automated classification of documents into predefined categories. There is wide range of supervised learning algorithms that deal with text classification. KNN is one the most popular classifiers, simple to utilize and sufficiently effective. This paper deals with an approach for building a machine learning system in R that uses K-Nearest Neighbors (KNN) method for the classification of textual documents. The experimental part of the research was done on collected textual documents from two sources: http://egov.kz and http://www.government.kz. Download full text:Check if you have access through your login credentials or your institution Username Password" @default.
- W2561241904 created "2017-01-06" @default.
- W2561241904 creator A5031549710 @default.
- W2561241904 creator A5065490721 @default.
- W2561241904 date "2016-01-01" @default.
- W2561241904 modified "2023-09-27" @default.
- W2561241904 title "CLASSIFICATION OF TEXTUAL DOCUMENTS IN R USING KNN ALGORITHM" @default.
- W2561241904 doi "https://doi.org/10.21506/j.ponte.2016.12.35" @default.
- W2561241904 hasPublicationYear "2016" @default.
- W2561241904 type Work @default.
- W2561241904 sameAs 2561241904 @default.
- W2561241904 citedByCount "0" @default.
- W2561241904 crossrefType "journal-article" @default.
- W2561241904 hasAuthorship W2561241904A5031549710 @default.
- W2561241904 hasAuthorship W2561241904A5065490721 @default.
- W2561241904 hasConcept C11413529 @default.
- W2561241904 hasConcept C153180895 @default.
- W2561241904 hasConcept C154945302 @default.
- W2561241904 hasConcept C204321447 @default.
- W2561241904 hasConcept C23123220 @default.
- W2561241904 hasConcept C41008148 @default.
- W2561241904 hasConceptScore W2561241904C11413529 @default.
- W2561241904 hasConceptScore W2561241904C153180895 @default.
- W2561241904 hasConceptScore W2561241904C154945302 @default.
- W2561241904 hasConceptScore W2561241904C204321447 @default.
- W2561241904 hasConceptScore W2561241904C23123220 @default.
- W2561241904 hasConceptScore W2561241904C41008148 @default.
- W2561241904 hasIssue "12" @default.
- W2561241904 hasLocation W25612419041 @default.
- W2561241904 hasOpenAccess W2561241904 @default.
- W2561241904 hasPrimaryLocation W25612419041 @default.
- W2561241904 hasRelatedWork W120966433 @default.
- W2561241904 hasRelatedWork W1501575752 @default.
- W2561241904 hasRelatedWork W1990075238 @default.
- W2561241904 hasRelatedWork W2005284443 @default.
- W2561241904 hasRelatedWork W2089015933 @default.
- W2561241904 hasRelatedWork W2114750518 @default.
- W2561241904 hasRelatedWork W2168812139 @default.
- W2561241904 hasRelatedWork W2250537013 @default.
- W2561241904 hasRelatedWork W2345248258 @default.
- W2561241904 hasRelatedWork W2464446456 @default.
- W2561241904 hasRelatedWork W2502479469 @default.
- W2561241904 hasRelatedWork W2542538719 @default.
- W2561241904 hasRelatedWork W2690447633 @default.
- W2561241904 hasRelatedWork W2766078833 @default.
- W2561241904 hasRelatedWork W2796064058 @default.
- W2561241904 hasRelatedWork W2954063367 @default.
- W2561241904 hasRelatedWork W3005684685 @default.
- W2561241904 hasRelatedWork W3016547466 @default.
- W2561241904 hasRelatedWork W3124906615 @default.
- W2561241904 hasRelatedWork W3196343399 @default.
- W2561241904 hasVolume "72" @default.
- W2561241904 isParatext "false" @default.
- W2561241904 isRetracted "false" @default.
- W2561241904 magId "2561241904" @default.
- W2561241904 workType "article" @default.