Matches in SemOpenAlex for { <https://semopenalex.org/work/W2561572938> ?p ?o ?g. }
- W2561572938 endingPage "e0168274" @default.
- W2561572938 startingPage "e0168274" @default.
- W2561572938 abstract "Common leaf spot (caused by Pseudopeziza medicaginis), rust (caused by Uromyces striatus), Leptosphaerulina leaf spot (caused by Leptosphaerulina briosiana) and Cercospora leaf spot (caused by Cercospora medicaginis) are the four common types of alfalfa leaf diseases. Timely and accurate diagnoses of these diseases are critical for disease management, alfalfa quality control and the healthy development of the alfalfa industry. In this study, the identification and diagnosis of the four types of alfalfa leaf diseases were investigated using pattern recognition algorithms based on image-processing technology. A sub-image with one or multiple typical lesions was obtained by artificial cutting from each acquired digital disease image. Then the sub-images were segmented using twelve lesion segmentation methods integrated with clustering algorithms (including K_means clustering, fuzzy C-means clustering and K_median clustering) and supervised classification algorithms (including logistic regression analysis, Naive Bayes algorithm, classification and regression tree, and linear discriminant analysis). After a comprehensive comparison, the segmentation method integrating the K_median clustering algorithm and linear discriminant analysis was chosen to obtain lesion images. After the lesion segmentation using this method, a total of 129 texture, color and shape features were extracted from the lesion images. Based on the features selected using three methods (ReliefF, 1R and correlation-based feature selection), disease recognition models were built using three supervised learning methods, including the random forest, support vector machine (SVM) and K-nearest neighbor methods. A comparison of the recognition results of the models was conducted. The results showed that when the ReliefF method was used for feature selection, the SVM model built with the most important 45 features (selected from a total of 129 features) was the optimal model. For this SVM model, the recognition accuracies of the training set and the testing set were 97.64% and 94.74%, respectively. Semi-supervised models for disease recognition were built based on the 45 effective features that were used for building the optimal SVM model. For the optimal semi-supervised models built with three ratios of labeled to unlabeled samples in the training set, the recognition accuracies of the training set and the testing set were both approximately 80%. The results indicated that image recognition of the four alfalfa leaf diseases can be implemented with high accuracy. This study provides a feasible solution for lesion image segmentation and image recognition of alfalfa leaf disease." @default.
- W2561572938 created "2017-01-06" @default.
- W2561572938 creator A5007464615 @default.
- W2561572938 creator A5024266996 @default.
- W2561572938 creator A5028781688 @default.
- W2561572938 creator A5077349687 @default.
- W2561572938 creator A5082654276 @default.
- W2561572938 creator A5088103067 @default.
- W2561572938 date "2016-12-15" @default.
- W2561572938 modified "2023-10-04" @default.
- W2561572938 title "Identification of Alfalfa Leaf Diseases Using Image Recognition Technology" @default.
- W2561572938 cites W1808644423 @default.
- W2561572938 cites W1968378357 @default.
- W2561572938 cites W1970793895 @default.
- W2561572938 cites W1989434047 @default.
- W2561572938 cites W2003007706 @default.
- W2561572938 cites W2006274653 @default.
- W2561572938 cites W2023057971 @default.
- W2561572938 cites W2041636156 @default.
- W2561572938 cites W2048491684 @default.
- W2561572938 cites W2059529002 @default.
- W2561572938 cites W2067924831 @default.
- W2561572938 cites W2073677295 @default.
- W2561572938 cites W2079057609 @default.
- W2561572938 cites W2122111042 @default.
- W2561572938 cites W2138181354 @default.
- W2561572938 cites W2139212933 @default.
- W2561572938 cites W2139662573 @default.
- W2561572938 cites W2142271007 @default.
- W2561572938 cites W2153635508 @default.
- W2561572938 cites W2162772680 @default.
- W2561572938 cites W2204038779 @default.
- W2561572938 cites W2277854822 @default.
- W2561572938 cites W2321648212 @default.
- W2561572938 cites W2911964244 @default.
- W2561572938 cites W4239510810 @default.
- W2561572938 cites W4252441533 @default.
- W2561572938 cites W959133077 @default.
- W2561572938 doi "https://doi.org/10.1371/journal.pone.0168274" @default.
- W2561572938 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/5158033" @default.
- W2561572938 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/27977767" @default.
- W2561572938 hasPublicationYear "2016" @default.
- W2561572938 type Work @default.
- W2561572938 sameAs 2561572938 @default.
- W2561572938 citedByCount "108" @default.
- W2561572938 countsByYear W25615729382017 @default.
- W2561572938 countsByYear W25615729382018 @default.
- W2561572938 countsByYear W25615729382019 @default.
- W2561572938 countsByYear W25615729382020 @default.
- W2561572938 countsByYear W25615729382021 @default.
- W2561572938 countsByYear W25615729382022 @default.
- W2561572938 countsByYear W25615729382023 @default.
- W2561572938 crossrefType "journal-article" @default.
- W2561572938 hasAuthorship W2561572938A5007464615 @default.
- W2561572938 hasAuthorship W2561572938A5024266996 @default.
- W2561572938 hasAuthorship W2561572938A5028781688 @default.
- W2561572938 hasAuthorship W2561572938A5077349687 @default.
- W2561572938 hasAuthorship W2561572938A5082654276 @default.
- W2561572938 hasAuthorship W2561572938A5088103067 @default.
- W2561572938 hasBestOaLocation W25615729381 @default.
- W2561572938 hasConcept C12267149 @default.
- W2561572938 hasConcept C124504099 @default.
- W2561572938 hasConcept C148483581 @default.
- W2561572938 hasConcept C153180895 @default.
- W2561572938 hasConcept C154945302 @default.
- W2561572938 hasConcept C169258074 @default.
- W2561572938 hasConcept C41008148 @default.
- W2561572938 hasConcept C52001869 @default.
- W2561572938 hasConcept C69738355 @default.
- W2561572938 hasConcept C73555534 @default.
- W2561572938 hasConcept C89600930 @default.
- W2561572938 hasConceptScore W2561572938C12267149 @default.
- W2561572938 hasConceptScore W2561572938C124504099 @default.
- W2561572938 hasConceptScore W2561572938C148483581 @default.
- W2561572938 hasConceptScore W2561572938C153180895 @default.
- W2561572938 hasConceptScore W2561572938C154945302 @default.
- W2561572938 hasConceptScore W2561572938C169258074 @default.
- W2561572938 hasConceptScore W2561572938C41008148 @default.
- W2561572938 hasConceptScore W2561572938C52001869 @default.
- W2561572938 hasConceptScore W2561572938C69738355 @default.
- W2561572938 hasConceptScore W2561572938C73555534 @default.
- W2561572938 hasConceptScore W2561572938C89600930 @default.
- W2561572938 hasFunder F4320335448 @default.
- W2561572938 hasIssue "12" @default.
- W2561572938 hasLocation W25615729381 @default.
- W2561572938 hasLocation W25615729382 @default.
- W2561572938 hasLocation W25615729383 @default.
- W2561572938 hasLocation W25615729384 @default.
- W2561572938 hasOpenAccess W2561572938 @default.
- W2561572938 hasPrimaryLocation W25615729381 @default.
- W2561572938 hasRelatedWork W1563895814 @default.
- W2561572938 hasRelatedWork W2096363641 @default.
- W2561572938 hasRelatedWork W2202048117 @default.
- W2561572938 hasRelatedWork W2754350655 @default.
- W2561572938 hasRelatedWork W2754510604 @default.
- W2561572938 hasRelatedWork W2985924212 @default.
- W2561572938 hasRelatedWork W3122308606 @default.
- W2561572938 hasRelatedWork W4213444042 @default.