Matches in SemOpenAlex for { <https://semopenalex.org/work/W2561578800> ?p ?o ?g. }
- W2561578800 endingPage "14" @default.
- W2561578800 startingPage "4" @default.
- W2561578800 abstract "Prediction of multiple emissions of boiler such as NOX, SO2 and mercury accurately and quickly can help operating engineers understanding the power unit deeply and controlling harmful emissions efficiently. However, most of existing works did not consider multiple emissions prediction, on-line prediction and accurately prediction in a simple and uniform framework. To this end, a new neural network system, named Globally Enhanced General Regression Neural Network (GE-GRNN), is proposed to solve multiple emissions prediction problem for utility boiler under on-line environment. The proposed GE-GRNN is based on General Regression Neural Network (GRNN), and employs Gaussian Adapted Resonance Theory (GART) as an incremental learning method to reduce memory cost of GRNN emission model, which is very suitable for large-scale real-time input samples. As contributions, three methods are introduced in GE-GRNN: (1) a modified wiggle-method is proposed to adjust smooth factors of GRNN dynamically to enhance both global and local estimations; (2) a fast polynomial extrapolation structure is designed in hidden layers of GRNN to improve the quality of extreme value estimation; and (3) a hybrid estimation mechanism is established to integrate wiggle-method and extrapolation into an uniform estimation framework. The simulation experiments are conducted on mathematical functions and real-world emissions predication of NOX and loss on ignition (LOI) of fly ash in a 600MW boiler. Results show that the proposed system performs attractive on-line performance while keeping agreement with testing samples well. The predicted emission performance of the tested boiler is reasonable, and can provide valuable reference to emission optimization. The proposed framework is domain independent and can be used to other fields for on-line multiple performances prediction." @default.
- W2561578800 created "2017-01-06" @default.
- W2561578800 creator A5031237407 @default.
- W2561578800 creator A5048797911 @default.
- W2561578800 creator A5062926317 @default.
- W2561578800 creator A5081180882 @default.
- W2561578800 date "2017-02-01" @default.
- W2561578800 modified "2023-09-30" @default.
- W2561578800 title "A globally enhanced general regression neural network for on-line multiple emissions prediction of utility boiler" @default.
- W2561578800 cites W1980067289 @default.
- W2561578800 cites W1982610692 @default.
- W2561578800 cites W1995313554 @default.
- W2561578800 cites W1997175741 @default.
- W2561578800 cites W1999432127 @default.
- W2561578800 cites W2000511504 @default.
- W2561578800 cites W2011136545 @default.
- W2561578800 cites W2017875966 @default.
- W2561578800 cites W2019319598 @default.
- W2561578800 cites W2026263342 @default.
- W2561578800 cites W2028457165 @default.
- W2561578800 cites W2031061930 @default.
- W2561578800 cites W2033582647 @default.
- W2561578800 cites W2035984084 @default.
- W2561578800 cites W2051453543 @default.
- W2561578800 cites W2062223829 @default.
- W2561578800 cites W2073137199 @default.
- W2561578800 cites W2080073114 @default.
- W2561578800 cites W2080507495 @default.
- W2561578800 cites W2088349231 @default.
- W2561578800 cites W2089686343 @default.
- W2561578800 cites W2095089989 @default.
- W2561578800 cites W2103550798 @default.
- W2561578800 cites W2131246644 @default.
- W2561578800 cites W2134732652 @default.
- W2561578800 cites W2149723649 @default.
- W2561578800 cites W2176905828 @default.
- W2561578800 cites W2396811760 @default.
- W2561578800 cites W260467751 @default.
- W2561578800 doi "https://doi.org/10.1016/j.knosys.2016.11.003" @default.
- W2561578800 hasPublicationYear "2017" @default.
- W2561578800 type Work @default.
- W2561578800 sameAs 2561578800 @default.
- W2561578800 citedByCount "41" @default.
- W2561578800 countsByYear W25615788002017 @default.
- W2561578800 countsByYear W25615788002018 @default.
- W2561578800 countsByYear W25615788002019 @default.
- W2561578800 countsByYear W25615788002020 @default.
- W2561578800 countsByYear W25615788002021 @default.
- W2561578800 countsByYear W25615788002022 @default.
- W2561578800 countsByYear W25615788002023 @default.
- W2561578800 crossrefType "journal-article" @default.
- W2561578800 hasAuthorship W2561578800A5031237407 @default.
- W2561578800 hasAuthorship W2561578800A5048797911 @default.
- W2561578800 hasAuthorship W2561578800A5062926317 @default.
- W2561578800 hasAuthorship W2561578800A5081180882 @default.
- W2561578800 hasConcept C105795698 @default.
- W2561578800 hasConcept C119857082 @default.
- W2561578800 hasConcept C121332964 @default.
- W2561578800 hasConcept C124101348 @default.
- W2561578800 hasConcept C127413603 @default.
- W2561578800 hasConcept C132459708 @default.
- W2561578800 hasConcept C154945302 @default.
- W2561578800 hasConcept C163716315 @default.
- W2561578800 hasConcept C2780013297 @default.
- W2561578800 hasConcept C33923547 @default.
- W2561578800 hasConcept C41008148 @default.
- W2561578800 hasConcept C50644808 @default.
- W2561578800 hasConcept C548081761 @default.
- W2561578800 hasConcept C62520636 @default.
- W2561578800 hasConcept C83546350 @default.
- W2561578800 hasConceptScore W2561578800C105795698 @default.
- W2561578800 hasConceptScore W2561578800C119857082 @default.
- W2561578800 hasConceptScore W2561578800C121332964 @default.
- W2561578800 hasConceptScore W2561578800C124101348 @default.
- W2561578800 hasConceptScore W2561578800C127413603 @default.
- W2561578800 hasConceptScore W2561578800C132459708 @default.
- W2561578800 hasConceptScore W2561578800C154945302 @default.
- W2561578800 hasConceptScore W2561578800C163716315 @default.
- W2561578800 hasConceptScore W2561578800C2780013297 @default.
- W2561578800 hasConceptScore W2561578800C33923547 @default.
- W2561578800 hasConceptScore W2561578800C41008148 @default.
- W2561578800 hasConceptScore W2561578800C50644808 @default.
- W2561578800 hasConceptScore W2561578800C548081761 @default.
- W2561578800 hasConceptScore W2561578800C62520636 @default.
- W2561578800 hasConceptScore W2561578800C83546350 @default.
- W2561578800 hasLocation W25615788001 @default.
- W2561578800 hasOpenAccess W2561578800 @default.
- W2561578800 hasPrimaryLocation W25615788001 @default.
- W2561578800 hasRelatedWork W2012884882 @default.
- W2561578800 hasRelatedWork W2089686343 @default.
- W2561578800 hasRelatedWork W2961085424 @default.
- W2561578800 hasRelatedWork W3046775127 @default.
- W2561578800 hasRelatedWork W3170094116 @default.
- W2561578800 hasRelatedWork W4285260836 @default.
- W2561578800 hasRelatedWork W4286629047 @default.
- W2561578800 hasRelatedWork W4306321456 @default.
- W2561578800 hasRelatedWork W4306674287 @default.
- W2561578800 hasRelatedWork W4224009465 @default.