Matches in SemOpenAlex for { <https://semopenalex.org/work/W2561926643> ?p ?o ?g. }
- W2561926643 endingPage "426" @default.
- W2561926643 startingPage "413" @default.
- W2561926643 abstract "This paper presents a comparative study of the performance of three versions of Adaptive Neuro-Fuzzy Inference System (ANFIS) hybrid model and two innovative hybrid models in the prediction of oil and gas rese rvoir properties. ANFIS is a hybrid learning algorithm that combines the rule-based inferencing of fuzzy logic and the back-propagation learning procedure of Artificial Neural Networks. Functional Networks-Support Vector Machines (FN-SVM) and Functional Networks-Type-2 Fuzzy Logic (FN-T2FL) were proposed to improve the performance of the stand-alone SVM and T2FL models respectively. The FN component of the FN-T2FL hybrid model automatically extracts the most relevant attributes from the input data us ing the least square fitting algorithm as an improvement over the individual Functional Networks and Type-2 Fuzzy Logic models. The former is more promising as it combines two existing techniques that are very close in performance and well known for their computational stability and fast processing. The FN- SVM hybrid model also benefits from the excellent perfo rmance of the least-square-based model-selection algorithm of Functional Networks and the non-linear high-dimensional feature transformation capability that is based on structur al risk minimization and Tikhonov regularization properties of SVM. Training and testing the SVM component of the hybrid model with the best and dimensionally-reduced variables f rom the input data resulted in better performance with higher correlation coefficients, lower root mean square er rors and less execution time than the traditional SVM model. A co mparison of FN-SVM and FN-T2FL with the three versions of ANFIS showed the superiority of the FN-SVM model over the others. The three ANFIS models still proved to be good in solving real industrial problems due to their speed of execution especially in dense data conditions." @default.
- W2561926643 created "2017-01-06" @default.
- W2561926643 creator A5007012930 @default.
- W2561926643 creator A5027378012 @default.
- W2561926643 creator A5053834729 @default.
- W2561926643 date "2013-12-01" @default.
- W2561926643 modified "2023-09-28" @default.
- W2561926643 title "Prediction of Petroleum Reservoir Properties using Different Versions of Adaptive Neuro-Fuzzy Inference System Hybrid Models" @default.
- W2561926643 cites W1526844615 @default.
- W2561926643 cites W1692435959 @default.
- W2561926643 cites W1973880536 @default.
- W2561926643 cites W1974884708 @default.
- W2561926643 cites W1976909671 @default.
- W2561926643 cites W1977180287 @default.
- W2561926643 cites W1980458013 @default.
- W2561926643 cites W1981008593 @default.
- W2561926643 cites W1988210039 @default.
- W2561926643 cites W1988494513 @default.
- W2561926643 cites W1989330736 @default.
- W2561926643 cites W1995995344 @default.
- W2561926643 cites W1996300402 @default.
- W2561926643 cites W2001129580 @default.
- W2561926643 cites W2003259185 @default.
- W2561926643 cites W2004442931 @default.
- W2561926643 cites W2007057010 @default.
- W2561926643 cites W2014022474 @default.
- W2561926643 cites W2024594031 @default.
- W2561926643 cites W2030425196 @default.
- W2561926643 cites W2031369243 @default.
- W2561926643 cites W2035306825 @default.
- W2561926643 cites W2041746126 @default.
- W2561926643 cites W2059102255 @default.
- W2561926643 cites W2064245151 @default.
- W2561926643 cites W2065974921 @default.
- W2561926643 cites W2077189460 @default.
- W2561926643 cites W2078855524 @default.
- W2561926643 cites W2084241036 @default.
- W2561926643 cites W2092159336 @default.
- W2561926643 cites W2097267201 @default.
- W2561926643 cites W2100548522 @default.
- W2561926643 cites W2112820700 @default.
- W2561926643 cites W2128567501 @default.
- W2561926643 cites W2142528360 @default.
- W2561926643 cites W2150814974 @default.
- W2561926643 cites W2151554678 @default.
- W2561926643 cites W2155887555 @default.
- W2561926643 cites W2157767082 @default.
- W2561926643 cites W2464965747 @default.
- W2561926643 cites W3013439879 @default.
- W2561926643 cites W3146863510 @default.
- W2561926643 cites W73054936 @default.
- W2561926643 cites W781485535 @default.
- W2561926643 cites W2186590811 @default.
- W2561926643 cites W290981675 @default.
- W2561926643 hasPublicationYear "2013" @default.
- W2561926643 type Work @default.
- W2561926643 sameAs 2561926643 @default.
- W2561926643 citedByCount "4" @default.
- W2561926643 countsByYear W25619266432014 @default.
- W2561926643 countsByYear W25619266432015 @default.
- W2561926643 countsByYear W25619266432020 @default.
- W2561926643 countsByYear W25619266432021 @default.
- W2561926643 crossrefType "proceedings-article" @default.
- W2561926643 hasAuthorship W2561926643A5007012930 @default.
- W2561926643 hasAuthorship W2561926643A5027378012 @default.
- W2561926643 hasAuthorship W2561926643A5053834729 @default.
- W2561926643 hasConcept C105795698 @default.
- W2561926643 hasConcept C11413529 @default.
- W2561926643 hasConcept C119857082 @default.
- W2561926643 hasConcept C12267149 @default.
- W2561926643 hasConcept C124101348 @default.
- W2561926643 hasConcept C139945424 @default.
- W2561926643 hasConcept C148483581 @default.
- W2561926643 hasConcept C153180895 @default.
- W2561926643 hasConcept C154945302 @default.
- W2561926643 hasConcept C155032097 @default.
- W2561926643 hasConcept C186108316 @default.
- W2561926643 hasConcept C195975749 @default.
- W2561926643 hasConcept C33923547 @default.
- W2561926643 hasConcept C41008148 @default.
- W2561926643 hasConcept C50644808 @default.
- W2561926643 hasConcept C58166 @default.
- W2561926643 hasConceptScore W2561926643C105795698 @default.
- W2561926643 hasConceptScore W2561926643C11413529 @default.
- W2561926643 hasConceptScore W2561926643C119857082 @default.
- W2561926643 hasConceptScore W2561926643C12267149 @default.
- W2561926643 hasConceptScore W2561926643C124101348 @default.
- W2561926643 hasConceptScore W2561926643C139945424 @default.
- W2561926643 hasConceptScore W2561926643C148483581 @default.
- W2561926643 hasConceptScore W2561926643C153180895 @default.
- W2561926643 hasConceptScore W2561926643C154945302 @default.
- W2561926643 hasConceptScore W2561926643C155032097 @default.
- W2561926643 hasConceptScore W2561926643C186108316 @default.
- W2561926643 hasConceptScore W2561926643C195975749 @default.
- W2561926643 hasConceptScore W2561926643C33923547 @default.
- W2561926643 hasConceptScore W2561926643C41008148 @default.
- W2561926643 hasConceptScore W2561926643C50644808 @default.
- W2561926643 hasConceptScore W2561926643C58166 @default.