Matches in SemOpenAlex for { <https://semopenalex.org/work/W2562025950> ?p ?o ?g. }
- W2562025950 abstract "Cancer classification based on microarray data has gained attention in recent years from the bioinformatics community, due to a high death toll of cancer and the significance of early diagnosis. Among the many steps in cancer classification, one that is underexplored and can significantly affect the classification performance is data transformation. We develop two transformation techniques, called the unity-based normalization with min-max interval (UBMI) and the standard score with trimmed mean (SSTM), and compare them with existing techniques in terms of accuracy, sensitivity and specificity. The results show that our proposed methods outperform the methods tested. Overall, for example, the SSTM achieves the highest values of accuracy, sensitivity, and specificity in 73 out of 138 cases. The UBMI is the runner up, with 51 winning cases. This advantage confirms the ability of the UBMI and SSTM to accentuate the difference between samples of distinct classes, and highlights the importance of data transformation, a step that otherwise is usually overlooked." @default.
- W2562025950 created "2017-01-06" @default.
- W2562025950 creator A5019961239 @default.
- W2562025950 creator A5031515651 @default.
- W2562025950 creator A5064518453 @default.
- W2562025950 date "2016-10-01" @default.
- W2562025950 modified "2023-09-26" @default.
- W2562025950 title "Methods to transform microarray data for cancer prediction" @default.
- W2562025950 cites W1207390784 @default.
- W2562025950 cites W1964854862 @default.
- W2562025950 cites W1968011797 @default.
- W2562025950 cites W1976467876 @default.
- W2562025950 cites W1976908900 @default.
- W2562025950 cites W1977007469 @default.
- W2562025950 cites W2003925760 @default.
- W2562025950 cites W2042757155 @default.
- W2562025950 cites W2063506423 @default.
- W2562025950 cites W2076886572 @default.
- W2562025950 cites W2087684630 @default.
- W2562025950 cites W2103372737 @default.
- W2562025950 cites W2107665951 @default.
- W2562025950 cites W2130979840 @default.
- W2562025950 cites W2133111499 @default.
- W2562025950 cites W2136350778 @default.
- W2562025950 cites W2141826465 @default.
- W2562025950 cites W2142594886 @default.
- W2562025950 cites W2143426320 @default.
- W2562025950 cites W2160313795 @default.
- W2562025950 cites W2498260651 @default.
- W2562025950 cites W2524624025 @default.
- W2562025950 cites W2914795080 @default.
- W2562025950 cites W620038288 @default.
- W2562025950 doi "https://doi.org/10.1109/cibcb.2016.7758104" @default.
- W2562025950 hasPublicationYear "2016" @default.
- W2562025950 type Work @default.
- W2562025950 sameAs 2562025950 @default.
- W2562025950 citedByCount "2" @default.
- W2562025950 countsByYear W25620259502020 @default.
- W2562025950 countsByYear W25620259502021 @default.
- W2562025950 crossrefType "proceedings-article" @default.
- W2562025950 hasAuthorship W2562025950A5019961239 @default.
- W2562025950 hasAuthorship W2562025950A5031515651 @default.
- W2562025950 hasAuthorship W2562025950A5064518453 @default.
- W2562025950 hasConcept C104317684 @default.
- W2562025950 hasConcept C124101348 @default.
- W2562025950 hasConcept C127413603 @default.
- W2562025950 hasConcept C136886441 @default.
- W2562025950 hasConcept C144024400 @default.
- W2562025950 hasConcept C153180895 @default.
- W2562025950 hasConcept C154945302 @default.
- W2562025950 hasConcept C19165224 @default.
- W2562025950 hasConcept C204241405 @default.
- W2562025950 hasConcept C21200559 @default.
- W2562025950 hasConcept C24326235 @default.
- W2562025950 hasConcept C2991839399 @default.
- W2562025950 hasConcept C41008148 @default.
- W2562025950 hasConcept C55493867 @default.
- W2562025950 hasConcept C71924100 @default.
- W2562025950 hasConcept C86803240 @default.
- W2562025950 hasConcept C99454951 @default.
- W2562025950 hasConceptScore W2562025950C104317684 @default.
- W2562025950 hasConceptScore W2562025950C124101348 @default.
- W2562025950 hasConceptScore W2562025950C127413603 @default.
- W2562025950 hasConceptScore W2562025950C136886441 @default.
- W2562025950 hasConceptScore W2562025950C144024400 @default.
- W2562025950 hasConceptScore W2562025950C153180895 @default.
- W2562025950 hasConceptScore W2562025950C154945302 @default.
- W2562025950 hasConceptScore W2562025950C19165224 @default.
- W2562025950 hasConceptScore W2562025950C204241405 @default.
- W2562025950 hasConceptScore W2562025950C21200559 @default.
- W2562025950 hasConceptScore W2562025950C24326235 @default.
- W2562025950 hasConceptScore W2562025950C2991839399 @default.
- W2562025950 hasConceptScore W2562025950C41008148 @default.
- W2562025950 hasConceptScore W2562025950C55493867 @default.
- W2562025950 hasConceptScore W2562025950C71924100 @default.
- W2562025950 hasConceptScore W2562025950C86803240 @default.
- W2562025950 hasConceptScore W2562025950C99454951 @default.
- W2562025950 hasLocation W25620259501 @default.
- W2562025950 hasOpenAccess W2562025950 @default.
- W2562025950 hasPrimaryLocation W25620259501 @default.
- W2562025950 hasRelatedWork W1846373564 @default.
- W2562025950 hasRelatedWork W1965537020 @default.
- W2562025950 hasRelatedWork W1982017187 @default.
- W2562025950 hasRelatedWork W2012518830 @default.
- W2562025950 hasRelatedWork W2114816779 @default.
- W2562025950 hasRelatedWork W2168960022 @default.
- W2562025950 hasRelatedWork W2269044229 @default.
- W2562025950 hasRelatedWork W2528103907 @default.
- W2562025950 hasRelatedWork W25662382 @default.
- W2562025950 hasRelatedWork W2572816027 @default.
- W2562025950 hasRelatedWork W2589155842 @default.
- W2562025950 hasRelatedWork W2913466945 @default.
- W2562025950 hasRelatedWork W2948690542 @default.
- W2562025950 hasRelatedWork W3082787421 @default.
- W2562025950 hasRelatedWork W3161072930 @default.
- W2562025950 hasRelatedWork W3205686579 @default.
- W2562025950 hasRelatedWork W3213024030 @default.
- W2562025950 hasRelatedWork W1971764501 @default.
- W2562025950 hasRelatedWork W2810113585 @default.
- W2562025950 hasRelatedWork W3189484936 @default.