Matches in SemOpenAlex for { <https://semopenalex.org/work/W2562149025> ?p ?o ?g. }
Showing items 1 to 61 of
61
with 100 items per page.
- W2562149025 abstract "In this thesis we develop algorithms for the numerical solution of problems from nonlinearoptimum experimental design (OED) for parameter estimation in differential–algebraicequations. These OED problems can be formulated as special types of path- and control-constrained optimal control (OC) problems. The objective is to minimize a functional onthe covariance matrix of the model parameters that is given by first-order sensitivities of themodel equations. Additionally, the objective is nonlinearly coupled in time, which makeOED problems a challenging class of OC problems. For their numerical solution, we proposea direct multiple shooting parameterization to obtain a structured nonlinear programmingproblem (NLP). An augmented system of nominal and variational states for the modelsensitivities is parameterized on multiple shooting intervals and the objective is decoupledby means of additional variables and constraints. In the resulting NLP, we identify severalstructures that allow to evaluate derivatives at greatly reduced costs compared to a standardOC formulation.For the solution of the block-structured NLPs, we develop a new sequential quadraticprogramming (SQP) method. Therein, partitioned quasi-Newton updates are used to approximate the block-diagonal Hessian of the Lagrangian. We analyze a model problem withindefinite, block-diagonal Hessian and prove that positive definite approximations of theindividual blocks prevent superlinear convergence. For an OED model problem, we showthat more and more negative eigenvalues appear in the Hessian as the multiple shooting gridis refined and confirm the detrimental impact of positive definite Hessian approximations.Hence, we propose indefinite SR1 updates to guarantee fast local convergence. We developa filter line search globalization strategy that accepts indefinite Hessians based on a newcriterion derived from the proof of global convergence. BFGS updates with a scaling strategy to prevent large eigenvalues are used as fallback if the SR1 update does not promoteconvergence. For the solution of the arising sparse and nonconvex quadratic subproblems, aparametric active set method with inertia control within a Schur complement approach isdeveloped. It employs a symmetric, indefinite LBL T -factorization for the large, sparse KKTmatrix and maintains and updates QR-factors of a small and dense Schur complement.The new methods are complemented by two C++ implementations: muse transforms anOED or OC problem instance to a structured NLP by means of direct multiple shooting.A special feature is that fully independent grids for controls, states, path constraints, andmeasurements are maintained. This provides higher flexibility to adapt the NLP formulationto the characteristics of the problem at hand and facilitates comparison of different formulations in the light of the lifted Newton method. The software package blockSQP is animplementation of the new SQP method that uses a newly developed variant of the quadraticprogramming solver qpOASES. Numerical results are presented for a benchmark collection ofOED and OC problems that show how SR1 approximations improve local convergence overBFGS. The new method is then applied to two challenging OED applications from chemicalengineering. Its performance compares favorably to an available existing implementation." @default.
- W2562149025 created "2017-01-06" @default.
- W2562149025 creator A5036317597 @default.
- W2562149025 date "2015-01-01" @default.
- W2562149025 modified "2023-09-25" @default.
- W2562149025 title "Sequential quadratic programming with indefinite Hessian approximations for nonlinear optimum experimental design for parameter estimation in differential–algebraic equations" @default.
- W2562149025 doi "https://doi.org/10.11588/heidok.00019170" @default.
- W2562149025 hasPublicationYear "2015" @default.
- W2562149025 type Work @default.
- W2562149025 sameAs 2562149025 @default.
- W2562149025 citedByCount "1" @default.
- W2562149025 countsByYear W25621490252020 @default.
- W2562149025 crossrefType "dissertation" @default.
- W2562149025 hasAuthorship W2562149025A5036317597 @default.
- W2562149025 hasConcept C115527620 @default.
- W2562149025 hasConcept C121332964 @default.
- W2562149025 hasConcept C126255220 @default.
- W2562149025 hasConcept C158622935 @default.
- W2562149025 hasConcept C198927703 @default.
- W2562149025 hasConcept C203616005 @default.
- W2562149025 hasConcept C28826006 @default.
- W2562149025 hasConcept C33923547 @default.
- W2562149025 hasConcept C62520636 @default.
- W2562149025 hasConcept C81845259 @default.
- W2562149025 hasConceptScore W2562149025C115527620 @default.
- W2562149025 hasConceptScore W2562149025C121332964 @default.
- W2562149025 hasConceptScore W2562149025C126255220 @default.
- W2562149025 hasConceptScore W2562149025C158622935 @default.
- W2562149025 hasConceptScore W2562149025C198927703 @default.
- W2562149025 hasConceptScore W2562149025C203616005 @default.
- W2562149025 hasConceptScore W2562149025C28826006 @default.
- W2562149025 hasConceptScore W2562149025C33923547 @default.
- W2562149025 hasConceptScore W2562149025C62520636 @default.
- W2562149025 hasConceptScore W2562149025C81845259 @default.
- W2562149025 hasLocation W25621490251 @default.
- W2562149025 hasOpenAccess W2562149025 @default.
- W2562149025 hasPrimaryLocation W25621490251 @default.
- W2562149025 hasRelatedWork W133941095 @default.
- W2562149025 hasRelatedWork W1545385270 @default.
- W2562149025 hasRelatedWork W2061117882 @default.
- W2562149025 hasRelatedWork W2121619676 @default.
- W2562149025 hasRelatedWork W2138381978 @default.
- W2562149025 hasRelatedWork W2155813703 @default.
- W2562149025 hasRelatedWork W2187738672 @default.
- W2562149025 hasRelatedWork W2330479167 @default.
- W2562149025 hasRelatedWork W2752304891 @default.
- W2562149025 hasRelatedWork W2887569271 @default.
- W2562149025 hasRelatedWork W2903147819 @default.
- W2562149025 hasRelatedWork W2911988164 @default.
- W2562149025 hasRelatedWork W2924463295 @default.
- W2562149025 hasRelatedWork W3021847731 @default.
- W2562149025 hasRelatedWork W3022306456 @default.
- W2562149025 hasRelatedWork W3157774163 @default.
- W2562149025 hasRelatedWork W3172554614 @default.
- W2562149025 hasRelatedWork W3213906004 @default.
- W2562149025 hasRelatedWork W75995220 @default.
- W2562149025 hasRelatedWork W2604429128 @default.
- W2562149025 isParatext "false" @default.
- W2562149025 isRetracted "false" @default.
- W2562149025 magId "2562149025" @default.
- W2562149025 workType "dissertation" @default.