Matches in SemOpenAlex for { <https://semopenalex.org/work/W2562151446> ?p ?o ?g. }
- W2562151446 abstract "This paper presents a constructive training algorithm applied to face recognition and facial expression recognition. The multi layer perceptron MLP neural network is formed by a single hidden layer using a predefined number of neurons and a small number of training patterns. During the learning, the hidden neuron number is incremented when the mean square error MSE on the training data TD is not reaches a predefined value. Input patterns are learned incrementally until all patterns of TD are presented. The proposed algorithm allows to find synthesis parameters as the number of patterns corresponding for subsets of each class to be presented initially in the training step, the initial number of hidden neurons, the iterations number as well as the MSE value. The feature extraction stage is based on the perceived facial images and the Gabor filter. Compared to the literature review and the fixed MLP architecture, experimental results demonstrate the efficiency of the proposed approach." @default.
- W2562151446 created "2017-01-06" @default.
- W2562151446 creator A5016136233 @default.
- W2562151446 creator A5036168795 @default.
- W2562151446 creator A5057086273 @default.
- W2562151446 date "2017-01-01" @default.
- W2562151446 modified "2023-09-27" @default.
- W2562151446 title "MLP neural network using constructive training algorithm: application to face recognition and facial expression recognition" @default.
- W2562151446 cites W14146 @default.
- W2562151446 cites W1539520144 @default.
- W2562151446 cites W1910079862 @default.
- W2562151446 cites W1966915623 @default.
- W2562151446 cites W1970809932 @default.
- W2562151446 cites W1973747660 @default.
- W2562151446 cites W1979287988 @default.
- W2562151446 cites W1987179458 @default.
- W2562151446 cites W1989853140 @default.
- W2562151446 cites W1993551758 @default.
- W2562151446 cites W1997838579 @default.
- W2562151446 cites W2004075725 @default.
- W2562151446 cites W2004586011 @default.
- W2562151446 cites W2007717387 @default.
- W2562151446 cites W2010659032 @default.
- W2562151446 cites W2012778636 @default.
- W2562151446 cites W2018005049 @default.
- W2562151446 cites W2020949931 @default.
- W2562151446 cites W2024157222 @default.
- W2562151446 cites W2026512625 @default.
- W2562151446 cites W2029176216 @default.
- W2562151446 cites W2030901812 @default.
- W2562151446 cites W2031265081 @default.
- W2562151446 cites W2038576858 @default.
- W2562151446 cites W2039866355 @default.
- W2562151446 cites W2047950320 @default.
- W2562151446 cites W2052345845 @default.
- W2562151446 cites W2057106671 @default.
- W2562151446 cites W2058098602 @default.
- W2562151446 cites W2059652177 @default.
- W2562151446 cites W2063310393 @default.
- W2562151446 cites W2064565951 @default.
- W2562151446 cites W2066200210 @default.
- W2562151446 cites W2066332159 @default.
- W2562151446 cites W2067285818 @default.
- W2562151446 cites W2070574643 @default.
- W2562151446 cites W2080282247 @default.
- W2562151446 cites W2080412697 @default.
- W2562151446 cites W2089093251 @default.
- W2562151446 cites W2090447741 @default.
- W2562151446 cites W2094654793 @default.
- W2562151446 cites W2096566459 @default.
- W2562151446 cites W2107634464 @default.
- W2562151446 cites W2116322539 @default.
- W2562151446 cites W2117704033 @default.
- W2562151446 cites W2119586505 @default.
- W2562151446 cites W2121451737 @default.
- W2562151446 cites W2125127226 @default.
- W2562151446 cites W2129106196 @default.
- W2562151446 cites W2131693260 @default.
- W2562151446 cites W2138451337 @default.
- W2562151446 cites W2138583841 @default.
- W2562151446 cites W2140689817 @default.
- W2562151446 cites W2145310492 @default.
- W2562151446 cites W2147073725 @default.
- W2562151446 cites W2156143454 @default.
- W2562151446 cites W2158198839 @default.
- W2562151446 cites W2158424441 @default.
- W2562151446 cites W2165778925 @default.
- W2562151446 cites W2166469867 @default.
- W2562151446 cites W2168854967 @default.
- W2562151446 cites W3097096317 @default.
- W2562151446 cites W766657370 @default.
- W2562151446 cites W2181512576 @default.
- W2562151446 doi "https://doi.org/10.1504/ijista.2017.081316" @default.
- W2562151446 hasPublicationYear "2017" @default.
- W2562151446 type Work @default.
- W2562151446 sameAs 2562151446 @default.
- W2562151446 citedByCount "5" @default.
- W2562151446 countsByYear W25621514462017 @default.
- W2562151446 countsByYear W25621514462018 @default.
- W2562151446 countsByYear W25621514462019 @default.
- W2562151446 countsByYear W25621514462020 @default.
- W2562151446 crossrefType "journal-article" @default.
- W2562151446 hasAuthorship W2562151446A5016136233 @default.
- W2562151446 hasAuthorship W2562151446A5036168795 @default.
- W2562151446 hasAuthorship W2562151446A5057086273 @default.
- W2562151446 hasConcept C111919701 @default.
- W2562151446 hasConcept C11413529 @default.
- W2562151446 hasConcept C138885662 @default.
- W2562151446 hasConcept C144024400 @default.
- W2562151446 hasConcept C153180895 @default.
- W2562151446 hasConcept C154945302 @default.
- W2562151446 hasConcept C179717631 @default.
- W2562151446 hasConcept C195704467 @default.
- W2562151446 hasConcept C2776401178 @default.
- W2562151446 hasConcept C2778701210 @default.
- W2562151446 hasConcept C2779304628 @default.
- W2562151446 hasConcept C31510193 @default.
- W2562151446 hasConcept C36289849 @default.
- W2562151446 hasConcept C41008148 @default.
- W2562151446 hasConcept C41895202 @default.