Matches in SemOpenAlex for { <https://semopenalex.org/work/W2562172273> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W2562172273 endingPage "202" @default.
- W2562172273 startingPage "191" @default.
- W2562172273 abstract "Abstract The object of this study is to develop an intelligent control strategy, which comprises a compensatory fuzzy neural network (CFNN) controller with a dynamic particle swarm optimization (DPSO) based estimator, for on-line parameter estimation and control of a linear voice coil actuator (VCA). Because the plant Jacobian of the VCA is nonlinear and time-varying, it is difficult to derive the learning algorithm for the CFNN by using the conventional back-propagation (BP) method directly. Therefore, it is strongly desirable that an on-line manner can provide a reasonably good estimation of the plant Jacobian in the practical applications. In this study, the operating principle and dynamic analysis of the VCA are introduced first. Subsequently, the algorithms of the DPSO and CFNN are given where the DPSO and CFNN are utilized to obtain the control signal and estimate the plant Jacobian, respectively. Moreover, a convergence analyses is given to derive specific learning rates for ensuring the convergence of the control error. Finally, the proposed control strategy is implemented on a 32-bit floating-point digital signal processor (DSP) for experimental verification. Experimental results demonstrate the improved tracking performance and robustness of the proposed CFNN-DPSO controller with online Jacobian estimation compared with the conventional CFNN controller with constant one, for the VCA control system." @default.
- W2562172273 created "2017-01-06" @default.
- W2562172273 creator A5027170196 @default.
- W2562172273 creator A5091561050 @default.
- W2562172273 date "2017-04-01" @default.
- W2562172273 modified "2023-09-27" @default.
- W2562172273 title "Compensatory fuzzy neural network control with dynamic parameters estimation for linear voice coil actuator" @default.
- W2562172273 cites W1704135502 @default.
- W2562172273 cites W1970882730 @default.
- W2562172273 cites W1972647616 @default.
- W2562172273 cites W1975700474 @default.
- W2562172273 cites W1986080048 @default.
- W2562172273 cites W2025179714 @default.
- W2562172273 cites W2029135435 @default.
- W2562172273 cites W2034779609 @default.
- W2562172273 cites W2035710013 @default.
- W2562172273 cites W2044746977 @default.
- W2562172273 cites W2058054043 @default.
- W2562172273 cites W2088790775 @default.
- W2562172273 cites W2094366354 @default.
- W2562172273 cites W2103433033 @default.
- W2562172273 cites W2117238314 @default.
- W2562172273 cites W2118434599 @default.
- W2562172273 cites W2133221996 @default.
- W2562172273 cites W2140409335 @default.
- W2562172273 cites W2210950097 @default.
- W2562172273 cites W2316893288 @default.
- W2562172273 doi "https://doi.org/10.1016/j.precisioneng.2016.12.002" @default.
- W2562172273 hasPublicationYear "2017" @default.
- W2562172273 type Work @default.
- W2562172273 sameAs 2562172273 @default.
- W2562172273 citedByCount "4" @default.
- W2562172273 countsByYear W25621722732017 @default.
- W2562172273 countsByYear W25621722732019 @default.
- W2562172273 countsByYear W25621722732020 @default.
- W2562172273 countsByYear W25621722732021 @default.
- W2562172273 crossrefType "journal-article" @default.
- W2562172273 hasAuthorship W2562172273A5027170196 @default.
- W2562172273 hasAuthorship W2562172273A5091561050 @default.
- W2562172273 hasConcept C119599485 @default.
- W2562172273 hasConcept C127413603 @default.
- W2562172273 hasConcept C131513009 @default.
- W2562172273 hasConcept C154945302 @default.
- W2562172273 hasConcept C172707124 @default.
- W2562172273 hasConcept C195975749 @default.
- W2562172273 hasConcept C201995342 @default.
- W2562172273 hasConcept C2775924081 @default.
- W2562172273 hasConcept C30403606 @default.
- W2562172273 hasConcept C41008148 @default.
- W2562172273 hasConcept C47446073 @default.
- W2562172273 hasConcept C50644808 @default.
- W2562172273 hasConcept C58166 @default.
- W2562172273 hasConcept C96250715 @default.
- W2562172273 hasConceptScore W2562172273C119599485 @default.
- W2562172273 hasConceptScore W2562172273C127413603 @default.
- W2562172273 hasConceptScore W2562172273C131513009 @default.
- W2562172273 hasConceptScore W2562172273C154945302 @default.
- W2562172273 hasConceptScore W2562172273C172707124 @default.
- W2562172273 hasConceptScore W2562172273C195975749 @default.
- W2562172273 hasConceptScore W2562172273C201995342 @default.
- W2562172273 hasConceptScore W2562172273C2775924081 @default.
- W2562172273 hasConceptScore W2562172273C30403606 @default.
- W2562172273 hasConceptScore W2562172273C41008148 @default.
- W2562172273 hasConceptScore W2562172273C47446073 @default.
- W2562172273 hasConceptScore W2562172273C50644808 @default.
- W2562172273 hasConceptScore W2562172273C58166 @default.
- W2562172273 hasConceptScore W2562172273C96250715 @default.
- W2562172273 hasLocation W25621722731 @default.
- W2562172273 hasOpenAccess W2562172273 @default.
- W2562172273 hasPrimaryLocation W25621722731 @default.
- W2562172273 hasRelatedWork W1983340342 @default.
- W2562172273 hasRelatedWork W2027708105 @default.
- W2562172273 hasRelatedWork W2087137851 @default.
- W2562172273 hasRelatedWork W2111497324 @default.
- W2562172273 hasRelatedWork W2120519023 @default.
- W2562172273 hasRelatedWork W2170557438 @default.
- W2562172273 hasRelatedWork W2353459685 @default.
- W2562172273 hasRelatedWork W2544456626 @default.
- W2562172273 hasRelatedWork W3151157253 @default.
- W2562172273 hasRelatedWork W764034909 @default.
- W2562172273 hasVolume "48" @default.
- W2562172273 isParatext "false" @default.
- W2562172273 isRetracted "false" @default.
- W2562172273 magId "2562172273" @default.
- W2562172273 workType "article" @default.