Matches in SemOpenAlex for { <https://semopenalex.org/work/W2562202919> ?p ?o ?g. }
- W2562202919 endingPage "290" @default.
- W2562202919 startingPage "274" @default.
- W2562202919 abstract "Summary We explored controls of algal taxon richness (hereafter richness) in complex and hydrologically dynamic flood‐pulsed wetlands by comparing results from independent studies in two globally important subtropical wetlands: the Okavango Delta (Botswana) and the Florida Everglades (U.S.A.). In both wetlands, the flood pulse hydrology is regulated by distinct wet and dry seasons, and creates floodplain landscapes with heterogeneous habitats; algal growth is limited by phosphorus (P); and water uses threaten ecosystem function. To inform future comparisons of algal richness and distribution patterns, we assessed the role of hydrology and P as key controls of richness, and identified indicator taxa of desiccation disturbance and P scarcity in these wetlands under increasing hydrological, nutrient, and habitat changes. We used the intermediate disturbance hypothesis, and the species‐energy theory to explain algal richness patterns, and the competitive, stress‐tolerant, ruderal (CSR) framework to classify indicator taxa. We collected algal samples, environmental data and information expected to influence community structure (water depth, relative depth change, P concentrations, hydroperiod and habitat type) over several years at sites representing a broad range of environmental characteristics. To account for sample size differences, we estimated algal richness by determining the asymptote of taxon accumulation curves. Using multiple regression analysis, we assessed if and how water depth, depth change, P, hydroperiod, and habitat type influence richness within each wetland. We then compared the strength of the relationships between these controlling features and richness between wetlands. Using indicator species analysis on relative abundance data, we classified C, S and R indicator taxa associated with shorter/longer hydroperiod, and lower/higher P concentrations. In either wetland, we did not observe the negative unimodal relationship between site‐specific richness and water depth change that was expected following the intermediate disturbance hypothesis. It is possible that this relationship exists at more highly resolved temporal scales than the semi‐annual to annual scales hypothesised here. However, as nutrient flows and algal habitats depend on these wetlands' flood pulse, maintaining the Okavango's natural pulse, and increasing freshwater flow in the Everglades would help protect these wetlands' algal diversity. Chlorophyta richness (Okavango), and total, Bacillariophyta, Chlorophyta and cyanobacteria richness (Everglades) increased with higher P concentrations, as per species‐energy theory. In the Okavango, we classified 6 C and 49 R indicator taxa (e.g. many planktonic Chlorophyta), and in the Everglades, 15 C, 1 S and 9 R taxa (e.g. benthic Bacillariophyta and planktonic/benthic Chlorophyta), and one stress‐ and disturbance‐tolerant cyanobacterium species. Our results offer baseline information for future comparisons of richness, and abundance of C, S and R indicator taxa in subtropical wetlands; this can be used to quantify how algal communities may respond to potential changes in hydrology and P due to water diversion, anthropogenic nutrient loads, and climate change. Examining microhabitat heterogeneity, nitrogen and light availability, and grazing pressure in such wetlands would further illuminate patch‐scale controls of richness and life‐history strategy distribution in algal communities." @default.
- W2562202919 created "2017-01-06" @default.
- W2562202919 creator A5006855511 @default.
- W2562202919 creator A5024099519 @default.
- W2562202919 creator A5032009941 @default.
- W2562202919 creator A5081723140 @default.
- W2562202919 creator A5004260132 @default.
- W2562202919 date "2016-12-22" @default.
- W2562202919 modified "2023-10-05" @default.
- W2562202919 title "Algal richness and life‐history strategies are influenced by hydrology and phosphorus in two major subtropical wetlands" @default.
- W2562202919 cites W1483539979 @default.
- W2562202919 cites W1524607844 @default.
- W2562202919 cites W1548495737 @default.
- W2562202919 cites W1576951155 @default.
- W2562202919 cites W1968478395 @default.
- W2562202919 cites W1970398698 @default.
- W2562202919 cites W1981922696 @default.
- W2562202919 cites W1985612175 @default.
- W2562202919 cites W1996940885 @default.
- W2562202919 cites W1999460284 @default.
- W2562202919 cites W2001200569 @default.
- W2562202919 cites W2001483776 @default.
- W2562202919 cites W2003692323 @default.
- W2562202919 cites W2006309476 @default.
- W2562202919 cites W2013156639 @default.
- W2562202919 cites W2016292270 @default.
- W2562202919 cites W2023193586 @default.
- W2562202919 cites W2024830654 @default.
- W2562202919 cites W2031146172 @default.
- W2562202919 cites W2031544726 @default.
- W2562202919 cites W2039317838 @default.
- W2562202919 cites W2040235583 @default.
- W2562202919 cites W2040917554 @default.
- W2562202919 cites W2044912231 @default.
- W2562202919 cites W2048269991 @default.
- W2562202919 cites W2051782740 @default.
- W2562202919 cites W2052529932 @default.
- W2562202919 cites W2053655418 @default.
- W2562202919 cites W2055424972 @default.
- W2562202919 cites W2056462936 @default.
- W2562202919 cites W2058245418 @default.
- W2562202919 cites W2060990007 @default.
- W2562202919 cites W2071173575 @default.
- W2562202919 cites W2076343459 @default.
- W2562202919 cites W2080439372 @default.
- W2562202919 cites W2081693829 @default.
- W2562202919 cites W2085428237 @default.
- W2562202919 cites W2086300219 @default.
- W2562202919 cites W2088572913 @default.
- W2562202919 cites W2094356514 @default.
- W2562202919 cites W2104297498 @default.
- W2562202919 cites W2106656564 @default.
- W2562202919 cites W2110398128 @default.
- W2562202919 cites W2113079967 @default.
- W2562202919 cites W2119314709 @default.
- W2562202919 cites W2120580171 @default.
- W2562202919 cites W2126190379 @default.
- W2562202919 cites W2136175976 @default.
- W2562202919 cites W2140095831 @default.
- W2562202919 cites W2142289369 @default.
- W2562202919 cites W2146764474 @default.
- W2562202919 cites W2154617605 @default.
- W2562202919 cites W2166332317 @default.
- W2562202919 cites W2166722801 @default.
- W2562202919 cites W2171575131 @default.
- W2562202919 cites W2173370631 @default.
- W2562202919 cites W2300168522 @default.
- W2562202919 cites W2480999206 @default.
- W2562202919 cites W2521752094 @default.
- W2562202919 cites W4234727737 @default.
- W2562202919 cites W4236123536 @default.
- W2562202919 cites W4239918611 @default.
- W2562202919 cites W4245562712 @default.
- W2562202919 cites W4247260800 @default.
- W2562202919 cites W4253189144 @default.
- W2562202919 cites W945685749 @default.
- W2562202919 doi "https://doi.org/10.1111/fwb.12866" @default.
- W2562202919 hasPublicationYear "2016" @default.
- W2562202919 type Work @default.
- W2562202919 sameAs 2562202919 @default.
- W2562202919 citedByCount "12" @default.
- W2562202919 countsByYear W25622029192017 @default.
- W2562202919 countsByYear W25622029192018 @default.
- W2562202919 countsByYear W25622029192020 @default.
- W2562202919 countsByYear W25622029192021 @default.
- W2562202919 countsByYear W25622029192022 @default.
- W2562202919 countsByYear W25622029192023 @default.
- W2562202919 crossrefType "journal-article" @default.
- W2562202919 hasAuthorship W2562202919A5004260132 @default.
- W2562202919 hasAuthorship W2562202919A5006855511 @default.
- W2562202919 hasAuthorship W2562202919A5024099519 @default.
- W2562202919 hasAuthorship W2562202919A5032009941 @default.
- W2562202919 hasAuthorship W2562202919A5081723140 @default.
- W2562202919 hasBestOaLocation W25622029192 @default.
- W2562202919 hasConcept C185933670 @default.
- W2562202919 hasConcept C18903297 @default.
- W2562202919 hasConcept C205649164 @default.
- W2562202919 hasConcept C39432304 @default.