Matches in SemOpenAlex for { <https://semopenalex.org/work/W2562571161> ?p ?o ?g. }
Showing items 1 to 72 of
72
with 100 items per page.
- W2562571161 abstract "This chapter is concerned with cracks . Real cracks in solids are complicated: they are thin cavities, their two faces may touch, and the faces may be rough. We consider ideal cracks. By definition, such a crack is modelled by a smooth open surface Ω (such as a disc or a spherical cap); the elastic displacement is discontinuous across Ω, and the traction vanishes on both sides of Ω (so that the crack is seen as a cavity of zero volume). We suppose that we have one crack with a smooth edge, ∂Ω, embedded in an infinite, unbounded, three-dimensional solid. Extensions to multiple cracks, to cracks in two dimensions, to cracks in half-spaces or in bounded domains, or to cracks with less smoothness may be made, with varying degrees of difficulty. For a variety of applications, see the book by Zhang and Gross [16]. In fact, to keep the analysis relatively simple, we shall focus on analogous scalar problems coming from acoustics. Thus, we suppose that Ω is a thin screen in a compressible fluid. The screen is hard (or rigid), which means that we have a Neumann boundary condition. See Section 2 for details. We are interested in scattering time-harmonic waves by the screen. Much is known about how to calculate scattering from objects of non-zero volume [9]. Except in a few special cases (such as scattering by a sphere), it is usual to derive and solve (numerically) a boundary integral equation over the boundary of the scatterer. However, special methods are needed for zero-volume obstacles such as cracks and screens. In particular, the Neumann boundary condition means that it is inevitable that we shall encounter hypersingular boundary integral equations over the screen. These equations can be tackled directly (using boundary elements, perhaps), or they may be recast into other equivalent forms. For example, if the screen is flat, various simplifications can be made. Integral equations can also be used as the basis for various approximation schemes. After formulating our scattering problem in the next section, we give the governing hypersingular integral equation in Section 3. This equation is solved approximately for long waves (low-frequency scattering) in Section 4. The approach used is elevated to a well-known ‘strategy’ in Section 5 prior to further applications." @default.
- W2562571161 created "2017-01-06" @default.
- W2562571161 creator A5018940021 @default.
- W2562571161 date "2010-01-01" @default.
- W2562571161 modified "2023-09-26" @default.
- W2562571161 title "Integral Equations for Crack Scattering" @default.
- W2562571161 cites W1485954958 @default.
- W2562571161 cites W1752696270 @default.
- W2562571161 cites W2008106055 @default.
- W2562571161 cites W2015329252 @default.
- W2562571161 cites W2023130574 @default.
- W2562571161 cites W2025499214 @default.
- W2562571161 cites W2061531431 @default.
- W2562571161 cites W2064928632 @default.
- W2562571161 cites W2080102270 @default.
- W2562571161 cites W2081146047 @default.
- W2562571161 cites W2094937544 @default.
- W2562571161 cites W2104464102 @default.
- W2562571161 cites W2120223948 @default.
- W2562571161 cites W2164233982 @default.
- W2562571161 cites W2464256488 @default.
- W2562571161 hasPublicationYear "2010" @default.
- W2562571161 type Work @default.
- W2562571161 sameAs 2562571161 @default.
- W2562571161 citedByCount "0" @default.
- W2562571161 crossrefType "journal-article" @default.
- W2562571161 hasAuthorship W2562571161A5018940021 @default.
- W2562571161 hasConcept C120665830 @default.
- W2562571161 hasConcept C121332964 @default.
- W2562571161 hasConcept C134306372 @default.
- W2562571161 hasConcept C182310444 @default.
- W2562571161 hasConcept C191486275 @default.
- W2562571161 hasConcept C2524010 @default.
- W2562571161 hasConcept C27016315 @default.
- W2562571161 hasConcept C33923547 @default.
- W2562571161 hasConcept C34388435 @default.
- W2562571161 hasConceptScore W2562571161C120665830 @default.
- W2562571161 hasConceptScore W2562571161C121332964 @default.
- W2562571161 hasConceptScore W2562571161C134306372 @default.
- W2562571161 hasConceptScore W2562571161C182310444 @default.
- W2562571161 hasConceptScore W2562571161C191486275 @default.
- W2562571161 hasConceptScore W2562571161C2524010 @default.
- W2562571161 hasConceptScore W2562571161C27016315 @default.
- W2562571161 hasConceptScore W2562571161C33923547 @default.
- W2562571161 hasConceptScore W2562571161C34388435 @default.
- W2562571161 hasLocation W25625711611 @default.
- W2562571161 hasOpenAccess W2562571161 @default.
- W2562571161 hasPrimaryLocation W25625711611 @default.
- W2562571161 hasRelatedWork W148398973 @default.
- W2562571161 hasRelatedWork W1976440297 @default.
- W2562571161 hasRelatedWork W1985176787 @default.
- W2562571161 hasRelatedWork W1988223449 @default.
- W2562571161 hasRelatedWork W2012399880 @default.
- W2562571161 hasRelatedWork W2014728465 @default.
- W2562571161 hasRelatedWork W2046385910 @default.
- W2562571161 hasRelatedWork W2081456197 @default.
- W2562571161 hasRelatedWork W2121598240 @default.
- W2562571161 hasRelatedWork W2122666828 @default.
- W2562571161 hasRelatedWork W2188932923 @default.
- W2562571161 hasRelatedWork W2345705878 @default.
- W2562571161 hasRelatedWork W2479956865 @default.
- W2562571161 hasRelatedWork W2498936384 @default.
- W2562571161 hasRelatedWork W2778721356 @default.
- W2562571161 hasRelatedWork W2892652629 @default.
- W2562571161 hasRelatedWork W2906907308 @default.
- W2562571161 hasRelatedWork W618312899 @default.
- W2562571161 hasRelatedWork W2183511713 @default.
- W2562571161 hasRelatedWork W2551713902 @default.
- W2562571161 isParatext "false" @default.
- W2562571161 isRetracted "false" @default.
- W2562571161 magId "2562571161" @default.
- W2562571161 workType "article" @default.