Matches in SemOpenAlex for { <https://semopenalex.org/work/W2562703451> ?p ?o ?g. }
- W2562703451 abstract "We represent human body shape estimation from binary silhouettes or shaded images as a regression problem, and describe a novel method to tackle it using CNNs. Utilizing a parametric body model, we train CNNs to learn a global mapping from the input to shape parameters used to reconstruct the shapes of people, in neutral poses, with the application of garment fitting in mind. This results in an accurate, robust and automatic system, orders of magnitude faster than methods we compare to, enabling interactive applications. In addition, we show how to combine silhouettes from two views to improve prediction over a single view. The method is extensively evaluated on thousands of synthetic shapes and real data and compared to state of-art approaches, clearly outperforming methods based on global fitting and strongly competing with more expensive local fitting based ones." @default.
- W2562703451 created "2017-01-06" @default.
- W2562703451 creator A5014341228 @default.
- W2562703451 creator A5019017061 @default.
- W2562703451 creator A5033076979 @default.
- W2562703451 creator A5046322671 @default.
- W2562703451 creator A5073671992 @default.
- W2562703451 date "2016-10-01" @default.
- W2562703451 modified "2023-10-18" @default.
- W2562703451 title "HS-Nets: Estimating Human Body Shape from Silhouettes with Convolutional Neural Networks" @default.
- W2562703451 cites W1558985453 @default.
- W2562703451 cites W1562699689 @default.
- W2562703451 cites W1644641054 @default.
- W2562703451 cites W1834323716 @default.
- W2562703451 cites W1903029394 @default.
- W2562703451 cites W1944448249 @default.
- W2562703451 cites W1955462214 @default.
- W2562703451 cites W1977039804 @default.
- W2562703451 cites W1978216348 @default.
- W2562703451 cites W1988539193 @default.
- W2562703451 cites W1992475172 @default.
- W2562703451 cites W1993962870 @default.
- W2562703451 cites W1997337978 @default.
- W2562703451 cites W2006070214 @default.
- W2562703451 cites W2034643056 @default.
- W2562703451 cites W2034812226 @default.
- W2562703451 cites W2067997593 @default.
- W2562703451 cites W2071663264 @default.
- W2562703451 cites W2075834168 @default.
- W2562703451 cites W2080666679 @default.
- W2562703451 cites W2091564812 @default.
- W2562703451 cites W2102605133 @default.
- W2562703451 cites W2113325037 @default.
- W2562703451 cites W2122499640 @default.
- W2562703451 cites W2134484928 @default.
- W2562703451 cites W2135711152 @default.
- W2562703451 cites W2136340340 @default.
- W2562703451 cites W2149321585 @default.
- W2562703451 cites W2165414070 @default.
- W2562703451 cites W2168722300 @default.
- W2562703451 cites W2200124539 @default.
- W2562703451 cites W2293857883 @default.
- W2562703451 cites W2467139031 @default.
- W2562703451 cites W2520058379 @default.
- W2562703451 cites W2545173102 @default.
- W2562703451 cites W4205428647 @default.
- W2562703451 cites W4236667477 @default.
- W2562703451 cites W4242146635 @default.
- W2562703451 cites W4256194952 @default.
- W2562703451 cites W4256664074 @default.
- W2562703451 doi "https://doi.org/10.1109/3dv.2016.19" @default.
- W2562703451 hasPublicationYear "2016" @default.
- W2562703451 type Work @default.
- W2562703451 sameAs 2562703451 @default.
- W2562703451 citedByCount "67" @default.
- W2562703451 countsByYear W25627034512017 @default.
- W2562703451 countsByYear W25627034512018 @default.
- W2562703451 countsByYear W25627034512019 @default.
- W2562703451 countsByYear W25627034512020 @default.
- W2562703451 countsByYear W25627034512021 @default.
- W2562703451 countsByYear W25627034512022 @default.
- W2562703451 countsByYear W25627034512023 @default.
- W2562703451 crossrefType "proceedings-article" @default.
- W2562703451 hasAuthorship W2562703451A5014341228 @default.
- W2562703451 hasAuthorship W2562703451A5019017061 @default.
- W2562703451 hasAuthorship W2562703451A5033076979 @default.
- W2562703451 hasAuthorship W2562703451A5046322671 @default.
- W2562703451 hasAuthorship W2562703451A5073671992 @default.
- W2562703451 hasConcept C105795698 @default.
- W2562703451 hasConcept C117251300 @default.
- W2562703451 hasConcept C153180895 @default.
- W2562703451 hasConcept C154945302 @default.
- W2562703451 hasConcept C31972630 @default.
- W2562703451 hasConcept C33923547 @default.
- W2562703451 hasConcept C41008148 @default.
- W2562703451 hasConcept C48372109 @default.
- W2562703451 hasConcept C50644808 @default.
- W2562703451 hasConcept C81363708 @default.
- W2562703451 hasConcept C94375191 @default.
- W2562703451 hasConceptScore W2562703451C105795698 @default.
- W2562703451 hasConceptScore W2562703451C117251300 @default.
- W2562703451 hasConceptScore W2562703451C153180895 @default.
- W2562703451 hasConceptScore W2562703451C154945302 @default.
- W2562703451 hasConceptScore W2562703451C31972630 @default.
- W2562703451 hasConceptScore W2562703451C33923547 @default.
- W2562703451 hasConceptScore W2562703451C41008148 @default.
- W2562703451 hasConceptScore W2562703451C48372109 @default.
- W2562703451 hasConceptScore W2562703451C50644808 @default.
- W2562703451 hasConceptScore W2562703451C81363708 @default.
- W2562703451 hasConceptScore W2562703451C94375191 @default.
- W2562703451 hasLocation W25627034511 @default.
- W2562703451 hasOpenAccess W2562703451 @default.
- W2562703451 hasPrimaryLocation W25627034511 @default.
- W2562703451 hasRelatedWork W1891287906 @default.
- W2562703451 hasRelatedWork W1969923398 @default.
- W2562703451 hasRelatedWork W2036807459 @default.
- W2562703451 hasRelatedWork W2748454020 @default.
- W2562703451 hasRelatedWork W2767651786 @default.
- W2562703451 hasRelatedWork W2775347418 @default.
- W2562703451 hasRelatedWork W2912288872 @default.