Matches in SemOpenAlex for { <https://semopenalex.org/work/W2562737314> ?p ?o ?g. }
- W2562737314 abstract "Learning analytics are often formatted as visualisations developed from traced data collected as students study in online learning environments. Optimal analytics inform and motivate students’ decisions about adaptations that improve their learning. We observe that designs for learning often neglect theories and empirical findings in learning science that explain how students learn. We present six learning analytics that reflect what is known in six areas (we call them cases) of theory and research findings in the learning sciences: setting goals and monitoring progress, distributed practice, retrieval practice, prior knowledge for reading, comparative evaluation of writing, and collaborative learning. Our designs demonstrate learning analytics can be grounded in research on self-regulated learning and self-determination. We propose designs for learning analytics in general should guide students toward more effective self-regulated learning and promote motivation through perceptions of autonomy, competence, and relatedness." @default.
- W2562737314 created "2017-01-06" @default.
- W2562737314 creator A5014894635 @default.
- W2562737314 creator A5033819604 @default.
- W2562737314 creator A5047594686 @default.
- W2562737314 creator A5054294078 @default.
- W2562737314 creator A5055164265 @default.
- W2562737314 creator A5069400021 @default.
- W2562737314 creator A5072617582 @default.
- W2562737314 creator A5085040048 @default.
- W2562737314 creator A5089799951 @default.
- W2562737314 creator A5089936620 @default.
- W2562737314 date "2016-12-15" @default.
- W2562737314 modified "2023-10-17" @default.
- W2562737314 title "What if learning analytics were based on learning science?" @default.
- W2562737314 cites W1483580517 @default.
- W2562737314 cites W1533242878 @default.
- W2562737314 cites W1562208008 @default.
- W2562737314 cites W1755603279 @default.
- W2562737314 cites W1957711827 @default.
- W2562737314 cites W1971381325 @default.
- W2562737314 cites W1985375307 @default.
- W2562737314 cites W2024462452 @default.
- W2562737314 cites W2027264060 @default.
- W2562737314 cites W2041533701 @default.
- W2562737314 cites W2077883864 @default.
- W2562737314 cites W2078251144 @default.
- W2562737314 cites W2092301601 @default.
- W2562737314 cites W2111804672 @default.
- W2562737314 cites W2129062063 @default.
- W2562737314 cites W2134739125 @default.
- W2562737314 cites W2139121205 @default.
- W2562737314 cites W2142239958 @default.
- W2562737314 cites W2163569782 @default.
- W2562737314 cites W2523284206 @default.
- W2562737314 cites W2551280911 @default.
- W2562737314 cites W3044291841 @default.
- W2562737314 cites W79580931 @default.
- W2562737314 doi "https://doi.org/10.14742/ajet.3058" @default.
- W2562737314 hasPublicationYear "2016" @default.
- W2562737314 type Work @default.
- W2562737314 sameAs 2562737314 @default.
- W2562737314 citedByCount "58" @default.
- W2562737314 countsByYear W25627373142017 @default.
- W2562737314 countsByYear W25627373142018 @default.
- W2562737314 countsByYear W25627373142019 @default.
- W2562737314 countsByYear W25627373142020 @default.
- W2562737314 countsByYear W25627373142021 @default.
- W2562737314 countsByYear W25627373142022 @default.
- W2562737314 countsByYear W25627373142023 @default.
- W2562737314 crossrefType "journal-article" @default.
- W2562737314 hasAuthorship W2562737314A5014894635 @default.
- W2562737314 hasAuthorship W2562737314A5033819604 @default.
- W2562737314 hasAuthorship W2562737314A5047594686 @default.
- W2562737314 hasAuthorship W2562737314A5054294078 @default.
- W2562737314 hasAuthorship W2562737314A5055164265 @default.
- W2562737314 hasAuthorship W2562737314A5069400021 @default.
- W2562737314 hasAuthorship W2562737314A5072617582 @default.
- W2562737314 hasAuthorship W2562737314A5085040048 @default.
- W2562737314 hasAuthorship W2562737314A5089799951 @default.
- W2562737314 hasAuthorship W2562737314A5089936620 @default.
- W2562737314 hasBestOaLocation W25627373141 @default.
- W2562737314 hasConcept C100521375 @default.
- W2562737314 hasConcept C145420912 @default.
- W2562737314 hasConcept C15744967 @default.
- W2562737314 hasConcept C159456220 @default.
- W2562737314 hasConcept C16443162 @default.
- W2562737314 hasConcept C17744445 @default.
- W2562737314 hasConcept C19122763 @default.
- W2562737314 hasConcept C199539241 @default.
- W2562737314 hasConcept C2522767166 @default.
- W2562737314 hasConcept C2777648619 @default.
- W2562737314 hasConcept C37228920 @default.
- W2562737314 hasConcept C41008148 @default.
- W2562737314 hasConcept C49774154 @default.
- W2562737314 hasConcept C51672120 @default.
- W2562737314 hasConcept C56739046 @default.
- W2562737314 hasConcept C65414064 @default.
- W2562737314 hasConcept C77805123 @default.
- W2562737314 hasConcept C79158427 @default.
- W2562737314 hasConcept C88610354 @default.
- W2562737314 hasConcept C96427005 @default.
- W2562737314 hasConceptScore W2562737314C100521375 @default.
- W2562737314 hasConceptScore W2562737314C145420912 @default.
- W2562737314 hasConceptScore W2562737314C15744967 @default.
- W2562737314 hasConceptScore W2562737314C159456220 @default.
- W2562737314 hasConceptScore W2562737314C16443162 @default.
- W2562737314 hasConceptScore W2562737314C17744445 @default.
- W2562737314 hasConceptScore W2562737314C19122763 @default.
- W2562737314 hasConceptScore W2562737314C199539241 @default.
- W2562737314 hasConceptScore W2562737314C2522767166 @default.
- W2562737314 hasConceptScore W2562737314C2777648619 @default.
- W2562737314 hasConceptScore W2562737314C37228920 @default.
- W2562737314 hasConceptScore W2562737314C41008148 @default.
- W2562737314 hasConceptScore W2562737314C49774154 @default.
- W2562737314 hasConceptScore W2562737314C51672120 @default.
- W2562737314 hasConceptScore W2562737314C56739046 @default.
- W2562737314 hasConceptScore W2562737314C65414064 @default.
- W2562737314 hasConceptScore W2562737314C77805123 @default.
- W2562737314 hasConceptScore W2562737314C79158427 @default.