Matches in SemOpenAlex for { <https://semopenalex.org/work/W2562847855> ?p ?o ?g. }
- W2562847855 endingPage "2876" @default.
- W2562847855 startingPage "2858" @default.
- W2562847855 abstract "The Gaussian graphical model (GGM) is one of the well-known modelling approaches to describe biological networks under the steady-state condition via the precision matrix of data. In literature there are different methods to infer model parameters based on GGM. The neighbourhood selection with the lasso regression and the graphical lasso method are the most common techniques among these alternative estimation methods. But they can be computationally demanding when the system's dimension increases. Here, we suggest a non-parametric statistical approach, called the multivariate adaptive regression splines (MARS) as an alternative of GGM. To compare the performance of both models, we evaluate the findings of normal and non-normal data via the specificity, precision, F-measures and their computational costs. From the outputs, we see that MARS performs well, resulting in, a plausible alternative approach with respect to GGM in the construction of complex biological systems." @default.
- W2562847855 created "2017-01-06" @default.
- W2562847855 creator A5004543530 @default.
- W2562847855 creator A5017771055 @default.
- W2562847855 creator A5040145704 @default.
- W2562847855 date "2016-12-14" @default.
- W2562847855 modified "2023-09-27" @default.
- W2562847855 title "MARS as an alternative approach of Gaussian graphical model for biochemical networks" @default.
- W2562847855 cites W1480376833 @default.
- W2562847855 cites W1499965417 @default.
- W2562847855 cites W1556261580 @default.
- W2562847855 cites W1586885873 @default.
- W2562847855 cites W1594234351 @default.
- W2562847855 cites W1633679281 @default.
- W2562847855 cites W1966803739 @default.
- W2562847855 cites W1966862134 @default.
- W2562847855 cites W1972010412 @default.
- W2562847855 cites W1975075722 @default.
- W2562847855 cites W1987548977 @default.
- W2562847855 cites W1999910275 @default.
- W2562847855 cites W2002676276 @default.
- W2562847855 cites W2013358857 @default.
- W2562847855 cites W2029716964 @default.
- W2562847855 cites W2034494306 @default.
- W2562847855 cites W2034774757 @default.
- W2562847855 cites W2038816913 @default.
- W2562847855 cites W2039347706 @default.
- W2562847855 cites W2053061982 @default.
- W2562847855 cites W2074360197 @default.
- W2562847855 cites W2075505197 @default.
- W2562847855 cites W2091706115 @default.
- W2562847855 cites W2097851380 @default.
- W2562847855 cites W2098280243 @default.
- W2562847855 cites W2102201073 @default.
- W2562847855 cites W2120889791 @default.
- W2562847855 cites W2125129404 @default.
- W2562847855 cites W2132555912 @default.
- W2562847855 cites W2140154342 @default.
- W2562847855 cites W2150002853 @default.
- W2562847855 cites W2150417333 @default.
- W2562847855 cites W2155418451 @default.
- W2562847855 cites W2168282770 @default.
- W2562847855 cites W2271221198 @default.
- W2562847855 cites W2469374503 @default.
- W2562847855 cites W2503502655 @default.
- W2562847855 cites W2787894218 @default.
- W2562847855 cites W3000332379 @default.
- W2562847855 cites W3098834468 @default.
- W2562847855 cites W4256038730 @default.
- W2562847855 doi "https://doi.org/10.1080/02664763.2016.1266465" @default.
- W2562847855 hasPublicationYear "2016" @default.
- W2562847855 type Work @default.
- W2562847855 sameAs 2562847855 @default.
- W2562847855 citedByCount "9" @default.
- W2562847855 countsByYear W25628478552018 @default.
- W2562847855 countsByYear W25628478552019 @default.
- W2562847855 countsByYear W25628478552020 @default.
- W2562847855 countsByYear W25628478552021 @default.
- W2562847855 crossrefType "journal-article" @default.
- W2562847855 hasAuthorship W2562847855A5004543530 @default.
- W2562847855 hasAuthorship W2562847855A5017771055 @default.
- W2562847855 hasAuthorship W2562847855A5040145704 @default.
- W2562847855 hasConcept C105795698 @default.
- W2562847855 hasConcept C11413529 @default.
- W2562847855 hasConcept C117251300 @default.
- W2562847855 hasConcept C119857082 @default.
- W2562847855 hasConcept C121332964 @default.
- W2562847855 hasConcept C124101348 @default.
- W2562847855 hasConcept C1276947 @default.
- W2562847855 hasConcept C136764020 @default.
- W2562847855 hasConcept C152877465 @default.
- W2562847855 hasConcept C154945302 @default.
- W2562847855 hasConcept C155846161 @default.
- W2562847855 hasConcept C163716315 @default.
- W2562847855 hasConcept C33923547 @default.
- W2562847855 hasConcept C37616216 @default.
- W2562847855 hasConcept C41008148 @default.
- W2562847855 hasConcept C44882253 @default.
- W2562847855 hasConcept C62520636 @default.
- W2562847855 hasConcept C74127309 @default.
- W2562847855 hasConcept C83260615 @default.
- W2562847855 hasConcept C83546350 @default.
- W2562847855 hasConcept C93959086 @default.
- W2562847855 hasConceptScore W2562847855C105795698 @default.
- W2562847855 hasConceptScore W2562847855C11413529 @default.
- W2562847855 hasConceptScore W2562847855C117251300 @default.
- W2562847855 hasConceptScore W2562847855C119857082 @default.
- W2562847855 hasConceptScore W2562847855C121332964 @default.
- W2562847855 hasConceptScore W2562847855C124101348 @default.
- W2562847855 hasConceptScore W2562847855C1276947 @default.
- W2562847855 hasConceptScore W2562847855C136764020 @default.
- W2562847855 hasConceptScore W2562847855C152877465 @default.
- W2562847855 hasConceptScore W2562847855C154945302 @default.
- W2562847855 hasConceptScore W2562847855C155846161 @default.
- W2562847855 hasConceptScore W2562847855C163716315 @default.
- W2562847855 hasConceptScore W2562847855C33923547 @default.
- W2562847855 hasConceptScore W2562847855C37616216 @default.
- W2562847855 hasConceptScore W2562847855C41008148 @default.