Matches in SemOpenAlex for { <https://semopenalex.org/work/W2562977502> ?p ?o ?g. }
Showing items 1 to 100 of
100
with 100 items per page.
- W2562977502 endingPage "218" @default.
- W2562977502 startingPage "193" @default.
- W2562977502 abstract "Abstract In this work nine non-linear regression models were compared for sub-pixel impervious surface area mapping from Landsat images. The comparison was done in three study areas both for accuracy of imperviousness coverage evaluation in individual points in time and accuracy of imperviousness change assessment. The performance of individual machine learning algorithms (Cubist, Random Forest, stochastic gradient boosting of regression trees, k-nearest neighbors regression, random k-nearest neighbors regression, Multivariate Adaptive Regression Splines, averaged neural networks, and support vector machines with polynomial and radial kernels) was also compared with the performance of heterogeneous model ensembles constructed from the best models trained using particular techniques. The results proved that in case of sub-pixel evaluation the most accurate prediction of change may not necessarily be based on the most accurate individual assessments. When single methods are considered, based on obtained results Cubist algorithm may be advised for Landsat based mapping of imperviousness for single dates. However, Random Forest may be endorsed when the most reliable evaluation of imperviousness change is the primary goal. It gave lower accuracies for individual assessments, but better prediction of change due to more correlated errors of individual predictions. Heterogeneous model ensembles performed for individual time points assessments at least as well as the best individual models. In case of imperviousness change assessment the ensembles always outperformed single model approaches. It means that it is possible to improve the accuracy of sub-pixel imperviousness change assessment using ensembles of heterogeneous non-linear regression models." @default.
- W2562977502 created "2017-01-06" @default.
- W2562977502 creator A5079869679 @default.
- W2562977502 date "2016-12-01" @default.
- W2562977502 modified "2023-10-18" @default.
- W2562977502 title "Improving sub-pixel imperviousness change prediction by ensembling heterogeneous non-linear regression models" @default.
- W2562977502 cites W1504083517 @default.
- W2562977502 cites W1831050183 @default.
- W2562977502 cites W1964357740 @default.
- W2562977502 cites W1980065767 @default.
- W2562977502 cites W1982083246 @default.
- W2562977502 cites W1991341257 @default.
- W2562977502 cites W1993565231 @default.
- W2562977502 cites W2000733812 @default.
- W2562977502 cites W2002469898 @default.
- W2562977502 cites W2007051440 @default.
- W2562977502 cites W2049827513 @default.
- W2562977502 cites W2057496091 @default.
- W2562977502 cites W2065644533 @default.
- W2562977502 cites W2070493638 @default.
- W2562977502 cites W2079177468 @default.
- W2562977502 cites W2084668217 @default.
- W2562977502 cites W2085289201 @default.
- W2562977502 cites W2094708176 @default.
- W2562977502 cites W2095234124 @default.
- W2562977502 cites W2101678239 @default.
- W2562977502 cites W2102201073 @default.
- W2562977502 cites W2105707747 @default.
- W2562977502 cites W2117812871 @default.
- W2562977502 cites W2120627814 @default.
- W2562977502 cites W2122304780 @default.
- W2562977502 cites W2128471397 @default.
- W2562977502 cites W2141545157 @default.
- W2562977502 cites W2147406638 @default.
- W2562977502 cites W2157026765 @default.
- W2562977502 cites W2162603605 @default.
- W2562977502 cites W2174882701 @default.
- W2562977502 cites W2191951831 @default.
- W2562977502 cites W2311626932 @default.
- W2562977502 cites W2328458692 @default.
- W2562977502 cites W2511177178 @default.
- W2562977502 cites W2911964244 @default.
- W2562977502 doi "https://doi.org/10.1515/geocart-2016-0016" @default.
- W2562977502 hasPublicationYear "2016" @default.
- W2562977502 type Work @default.
- W2562977502 sameAs 2562977502 @default.
- W2562977502 citedByCount "4" @default.
- W2562977502 countsByYear W25629775022017 @default.
- W2562977502 countsByYear W25629775022019 @default.
- W2562977502 countsByYear W25629775022022 @default.
- W2562977502 crossrefType "journal-article" @default.
- W2562977502 hasAuthorship W2562977502A5079869679 @default.
- W2562977502 hasBestOaLocation W25629775021 @default.
- W2562977502 hasConcept C105795698 @default.
- W2562977502 hasConcept C119857082 @default.
- W2562977502 hasConcept C12267149 @default.
- W2562977502 hasConcept C152877465 @default.
- W2562977502 hasConcept C154945302 @default.
- W2562977502 hasConcept C160633673 @default.
- W2562977502 hasConcept C169258074 @default.
- W2562977502 hasConcept C203595873 @default.
- W2562977502 hasConcept C33923547 @default.
- W2562977502 hasConcept C41008148 @default.
- W2562977502 hasConcept C48921125 @default.
- W2562977502 hasConcept C64946054 @default.
- W2562977502 hasConcept C83546350 @default.
- W2562977502 hasConceptScore W2562977502C105795698 @default.
- W2562977502 hasConceptScore W2562977502C119857082 @default.
- W2562977502 hasConceptScore W2562977502C12267149 @default.
- W2562977502 hasConceptScore W2562977502C152877465 @default.
- W2562977502 hasConceptScore W2562977502C154945302 @default.
- W2562977502 hasConceptScore W2562977502C160633673 @default.
- W2562977502 hasConceptScore W2562977502C169258074 @default.
- W2562977502 hasConceptScore W2562977502C203595873 @default.
- W2562977502 hasConceptScore W2562977502C33923547 @default.
- W2562977502 hasConceptScore W2562977502C41008148 @default.
- W2562977502 hasConceptScore W2562977502C48921125 @default.
- W2562977502 hasConceptScore W2562977502C64946054 @default.
- W2562977502 hasConceptScore W2562977502C83546350 @default.
- W2562977502 hasIssue "2" @default.
- W2562977502 hasLocation W25629775021 @default.
- W2562977502 hasOpenAccess W2562977502 @default.
- W2562977502 hasPrimaryLocation W25629775021 @default.
- W2562977502 hasRelatedWork W2979979539 @default.
- W2562977502 hasRelatedWork W3195168932 @default.
- W2562977502 hasRelatedWork W4205704907 @default.
- W2562977502 hasRelatedWork W4205958290 @default.
- W2562977502 hasRelatedWork W4210313929 @default.
- W2562977502 hasRelatedWork W4221129463 @default.
- W2562977502 hasRelatedWork W4283661982 @default.
- W2562977502 hasRelatedWork W4292148089 @default.
- W2562977502 hasRelatedWork W4307266384 @default.
- W2562977502 hasRelatedWork W4320483443 @default.
- W2562977502 hasVolume "65" @default.
- W2562977502 isParatext "false" @default.
- W2562977502 isRetracted "false" @default.
- W2562977502 magId "2562977502" @default.
- W2562977502 workType "article" @default.