Matches in SemOpenAlex for { <https://semopenalex.org/work/W2562977698> ?p ?o ?g. }
- W2562977698 endingPage "1669" @default.
- W2562977698 startingPage "1655" @default.
- W2562977698 abstract "In this paper, a prediction method for nonlinear time series based on a set membership (SM) approach is proposed. The method does not require the choice of the functional form of the model used for prediction, but assumes a bound on the rate of variation of the regression function defining the model. At the contrary, most of the existing prediction methods need the choice of a functional form of the regression function or of state equations (piecewise linear, quadratic, etc.) and this choice is usually the result of heuristic searches. These searches may be quite time consuming, and lead only to approximate model structures, whose errors may be responsible of bad propagation of prediction errors, especially for the multistep ahead prediction. Moreover, the method proposed in this paper assumes only that the noise is bounded, in contrast with statistical approaches, which rely on noise assumptions such as stationarity, ergodicity, uncorrelation, type of distribution, etc. The validity of these assumptions may be difficult to be reliably tested in many applications and is certainly lost in presence of approximate modeling. In the present SM approach, using a result developed in a previous paper, the values of the bounds on the gradient of the regression function and on the noise can be suitably assessed to verify the validity tests. Two almost optimal prediction algorithms are then derived, the second one having improved optimal properties over the first one, at the expense of an increased computational complexity. The method is tested and compared with other literature methods on the well-known Wolf Sunspot Numbers series, widely used in the time series literature as a benchmark test, and on the prediction of vertical dynamics of vehicles with controlled suspensions. A simulation example is also presented to investigate how much conservative the SM approach may be in the most adverse situation where data are generated by a linear autoregressive (AR) model driven by i.i.d. gaussian white noise and the SM prediction is compared with the optimal statistical predictor, which makes use of the exact assumptions." @default.
- W2562977698 created "2017-01-06" @default.
- W2562977698 creator A5079308383 @default.
- W2562977698 creator A5085761223 @default.
- W2562977698 date "2005-11-01" @default.
- W2562977698 modified "2023-09-23" @default.
- W2562977698 title "Set membership prediction of nonlinear time series" @default.
- W2562977698 cites W1487682962 @default.
- W2562977698 cites W1519380846 @default.
- W2562977698 cites W1896002532 @default.
- W2562977698 cites W1978956894 @default.
- W2562977698 cites W1992656403 @default.
- W2562977698 cites W2040135606 @default.
- W2562977698 cites W2049764483 @default.
- W2562977698 cites W2053904120 @default.
- W2562977698 cites W2055823751 @default.
- W2562977698 cites W2058407646 @default.
- W2562977698 cites W2072508748 @default.
- W2562977698 cites W2078491101 @default.
- W2562977698 cites W2087618517 @default.
- W2562977698 cites W2092333634 @default.
- W2562977698 cites W2093839069 @default.
- W2562977698 cites W2095515828 @default.
- W2562977698 cites W2108454139 @default.
- W2562977698 cites W2112840220 @default.
- W2562977698 cites W2114316570 @default.
- W2562977698 cites W2137633226 @default.
- W2562977698 cites W2138484437 @default.
- W2562977698 cites W2141214687 @default.
- W2562977698 cites W2156909104 @default.
- W2562977698 cites W2277428374 @default.
- W2562977698 cites W2889626940 @default.
- W2562977698 cites W4299521717 @default.
- W2562977698 cites W4300640952 @default.
- W2562977698 cites W2180970895 @default.
- W2562977698 doi "https://doi.org/10.1109/tac.2005.858693" @default.
- W2562977698 hasPublicationYear "2005" @default.
- W2562977698 type Work @default.
- W2562977698 sameAs 2562977698 @default.
- W2562977698 citedByCount "43" @default.
- W2562977698 countsByYear W25629776982012 @default.
- W2562977698 countsByYear W25629776982013 @default.
- W2562977698 countsByYear W25629776982014 @default.
- W2562977698 countsByYear W25629776982015 @default.
- W2562977698 countsByYear W25629776982016 @default.
- W2562977698 countsByYear W25629776982017 @default.
- W2562977698 countsByYear W25629776982018 @default.
- W2562977698 countsByYear W25629776982019 @default.
- W2562977698 countsByYear W25629776982020 @default.
- W2562977698 countsByYear W25629776982022 @default.
- W2562977698 crossrefType "journal-article" @default.
- W2562977698 hasAuthorship W2562977698A5079308383 @default.
- W2562977698 hasAuthorship W2562977698A5085761223 @default.
- W2562977698 hasConcept C105795698 @default.
- W2562977698 hasConcept C11413529 @default.
- W2562977698 hasConcept C115961682 @default.
- W2562977698 hasConcept C121332964 @default.
- W2562977698 hasConcept C126255220 @default.
- W2562977698 hasConcept C134306372 @default.
- W2562977698 hasConcept C14036430 @default.
- W2562977698 hasConcept C143724316 @default.
- W2562977698 hasConcept C151730666 @default.
- W2562977698 hasConcept C154945302 @default.
- W2562977698 hasConcept C158622935 @default.
- W2562977698 hasConcept C173801870 @default.
- W2562977698 hasConcept C201779956 @default.
- W2562977698 hasConcept C28826006 @default.
- W2562977698 hasConcept C33923547 @default.
- W2562977698 hasConcept C34388435 @default.
- W2562977698 hasConcept C41008148 @default.
- W2562977698 hasConcept C62520636 @default.
- W2562977698 hasConcept C78458016 @default.
- W2562977698 hasConcept C86803240 @default.
- W2562977698 hasConcept C99498987 @default.
- W2562977698 hasConceptScore W2562977698C105795698 @default.
- W2562977698 hasConceptScore W2562977698C11413529 @default.
- W2562977698 hasConceptScore W2562977698C115961682 @default.
- W2562977698 hasConceptScore W2562977698C121332964 @default.
- W2562977698 hasConceptScore W2562977698C126255220 @default.
- W2562977698 hasConceptScore W2562977698C134306372 @default.
- W2562977698 hasConceptScore W2562977698C14036430 @default.
- W2562977698 hasConceptScore W2562977698C143724316 @default.
- W2562977698 hasConceptScore W2562977698C151730666 @default.
- W2562977698 hasConceptScore W2562977698C154945302 @default.
- W2562977698 hasConceptScore W2562977698C158622935 @default.
- W2562977698 hasConceptScore W2562977698C173801870 @default.
- W2562977698 hasConceptScore W2562977698C201779956 @default.
- W2562977698 hasConceptScore W2562977698C28826006 @default.
- W2562977698 hasConceptScore W2562977698C33923547 @default.
- W2562977698 hasConceptScore W2562977698C34388435 @default.
- W2562977698 hasConceptScore W2562977698C41008148 @default.
- W2562977698 hasConceptScore W2562977698C62520636 @default.
- W2562977698 hasConceptScore W2562977698C78458016 @default.
- W2562977698 hasConceptScore W2562977698C86803240 @default.
- W2562977698 hasConceptScore W2562977698C99498987 @default.
- W2562977698 hasIssue "11" @default.
- W2562977698 hasLocation W25629776981 @default.
- W2562977698 hasOpenAccess W2562977698 @default.