Matches in SemOpenAlex for { <https://semopenalex.org/work/W2562999681> ?p ?o ?g. }
Showing items 1 to 96 of
96
with 100 items per page.
- W2562999681 abstract "3D face recognition holds great promise in achieving robustness to pose, expressions and occlusions. However, 3D face recognition algorithms are still far behind their 2D counterparts due to the lack of large-scale datasets. We present a model based algorithm for 3D face recognition and test its performance by combining two large public datasets of 3D faces. We propose a Fully Convolutional Deep Network (FCDN) to initialize our algorithm. Reliable seed points are then extracted from each 3D face by evolving level set curves with a single curvature dependent adaptive speed function. We then establish dense correspondence between the faces in the training set by matching the surface around the seed points on a template face to the ones on the target faces. A morphable model is then fitted to probe faces and face recognition is performed by matching the parameters of the probe and gallery faces. Our algorithm achieves state of the art landmark localization results. Face recognition results on the combined FRGCv2 and Bosphorus datasets show that our method is effective in recognizing query faces with real world variations in pose and expression, and with occlusion and missing data despite a huge gallery. Comparing results of individual and combined datasets show that the recognition accuracy drops when the size of the gallery increases." @default.
- W2562999681 created "2017-01-06" @default.
- W2562999681 creator A5075172808 @default.
- W2562999681 creator A5089986388 @default.
- W2562999681 date "2016-11-01" @default.
- W2562999681 modified "2023-09-25" @default.
- W2562999681 title "Towards Large-Scale 3D Face Recognition" @default.
- W2562999681 cites W1566413196 @default.
- W2562999681 cites W1903029394 @default.
- W2562999681 cites W1912799504 @default.
- W2562999681 cites W1981660604 @default.
- W2562999681 cites W1982755836 @default.
- W2562999681 cites W1998664500 @default.
- W2562999681 cites W2001125703 @default.
- W2562999681 cites W2003931381 @default.
- W2562999681 cites W2017035240 @default.
- W2562999681 cites W2022508996 @default.
- W2562999681 cites W2033419168 @default.
- W2562999681 cites W2059697919 @default.
- W2562999681 cites W2087642411 @default.
- W2562999681 cites W2091182651 @default.
- W2562999681 cites W2104300442 @default.
- W2562999681 cites W2106309519 @default.
- W2562999681 cites W2109647201 @default.
- W2562999681 cites W2120064431 @default.
- W2562999681 cites W2127292566 @default.
- W2562999681 cites W2128409098 @default.
- W2562999681 cites W2133131023 @default.
- W2562999681 cites W2134301144 @default.
- W2562999681 cites W2136020167 @default.
- W2562999681 cites W2137659841 @default.
- W2562999681 cites W2138544107 @default.
- W2562999681 cites W2143671486 @default.
- W2562999681 cites W2151231840 @default.
- W2562999681 cites W2160126058 @default.
- W2562999681 cites W2161308290 @default.
- W2562999681 cites W2165558283 @default.
- W2562999681 cites W2166335841 @default.
- W2562999681 cites W2166672191 @default.
- W2562999681 cites W2166743687 @default.
- W2562999681 cites W2168540480 @default.
- W2562999681 cites W2237250383 @default.
- W2562999681 cites W315826137 @default.
- W2562999681 doi "https://doi.org/10.1109/dicta.2016.7797090" @default.
- W2562999681 hasPublicationYear "2016" @default.
- W2562999681 type Work @default.
- W2562999681 sameAs 2562999681 @default.
- W2562999681 citedByCount "13" @default.
- W2562999681 countsByYear W25629996812018 @default.
- W2562999681 countsByYear W25629996812019 @default.
- W2562999681 countsByYear W25629996812020 @default.
- W2562999681 countsByYear W25629996812021 @default.
- W2562999681 countsByYear W25629996812022 @default.
- W2562999681 countsByYear W25629996812023 @default.
- W2562999681 crossrefType "proceedings-article" @default.
- W2562999681 hasAuthorship W2562999681A5075172808 @default.
- W2562999681 hasAuthorship W2562999681A5089986388 @default.
- W2562999681 hasConcept C144024400 @default.
- W2562999681 hasConcept C153180895 @default.
- W2562999681 hasConcept C154945302 @default.
- W2562999681 hasConcept C205649164 @default.
- W2562999681 hasConcept C2778755073 @default.
- W2562999681 hasConcept C2779304628 @default.
- W2562999681 hasConcept C31510193 @default.
- W2562999681 hasConcept C31972630 @default.
- W2562999681 hasConcept C36289849 @default.
- W2562999681 hasConcept C41008148 @default.
- W2562999681 hasConcept C58640448 @default.
- W2562999681 hasConceptScore W2562999681C144024400 @default.
- W2562999681 hasConceptScore W2562999681C153180895 @default.
- W2562999681 hasConceptScore W2562999681C154945302 @default.
- W2562999681 hasConceptScore W2562999681C205649164 @default.
- W2562999681 hasConceptScore W2562999681C2778755073 @default.
- W2562999681 hasConceptScore W2562999681C2779304628 @default.
- W2562999681 hasConceptScore W2562999681C31510193 @default.
- W2562999681 hasConceptScore W2562999681C31972630 @default.
- W2562999681 hasConceptScore W2562999681C36289849 @default.
- W2562999681 hasConceptScore W2562999681C41008148 @default.
- W2562999681 hasConceptScore W2562999681C58640448 @default.
- W2562999681 hasLocation W25629996811 @default.
- W2562999681 hasOpenAccess W2562999681 @default.
- W2562999681 hasPrimaryLocation W25629996811 @default.
- W2562999681 hasRelatedWork W1548715306 @default.
- W2562999681 hasRelatedWork W1560697087 @default.
- W2562999681 hasRelatedWork W1989039360 @default.
- W2562999681 hasRelatedWork W2060029454 @default.
- W2562999681 hasRelatedWork W2100085003 @default.
- W2562999681 hasRelatedWork W2136485282 @default.
- W2562999681 hasRelatedWork W2146295394 @default.
- W2562999681 hasRelatedWork W2347601237 @default.
- W2562999681 hasRelatedWork W2545171730 @default.
- W2562999681 hasRelatedWork W2908959303 @default.
- W2562999681 isParatext "false" @default.
- W2562999681 isRetracted "false" @default.
- W2562999681 magId "2562999681" @default.
- W2562999681 workType "article" @default.