Matches in SemOpenAlex for { <https://semopenalex.org/work/W2563117118> ?p ?o ?g. }
- W2563117118 endingPage "566" @default.
- W2563117118 startingPage "555" @default.
- W2563117118 abstract "Abstract Extreme Learning Machine provides very competitive performance to other related classical predictive models for solving problems such as regression, clustering, and classification. An ELM possesses the advantage of faster computational time in both training and testing. However, one of the main challenges of an ELM is the selection of the optimal number of hidden nodes. This paper presents a new approach to node selection of an ELM based on a 1-norm support vector machine (SVM). In this method, the targets of SVM y i ∈{+1, –1} are derived using the mean or median of ELM training errors as a threshold for separating the training data, which are projected to SVM dimensions. We present an integrated architecture that exploits the sparseness in solution of SVM to prune out the inactive hidden nodes in ELM. Several experiments are conducted on real-world benchmark datasets, and the results attained attest to the efficiency of the proposed method." @default.
- W2563117118 created "2017-01-06" @default.
- W2563117118 creator A5049457361 @default.
- W2563117118 creator A5050406307 @default.
- W2563117118 creator A5075771510 @default.
- W2563117118 creator A5076453382 @default.
- W2563117118 creator A5087113469 @default.
- W2563117118 date "2016-10-01" @default.
- W2563117118 modified "2023-10-03" @default.
- W2563117118 title "SVM–ELM: Pruning of Extreme Learning Machine with Support Vector Machines for Regression" @default.
- W2563117118 cites W1964400613 @default.
- W2563117118 cites W1990938413 @default.
- W2563117118 cites W1993105429 @default.
- W2563117118 cites W1996127671 @default.
- W2563117118 cites W2002728347 @default.
- W2563117118 cites W2010425280 @default.
- W2563117118 cites W2026131661 @default.
- W2563117118 cites W2034362047 @default.
- W2563117118 cites W2047860334 @default.
- W2563117118 cites W2049917046 @default.
- W2563117118 cites W2053847073 @default.
- W2563117118 cites W2087822830 @default.
- W2563117118 cites W2096987757 @default.
- W2563117118 cites W2099579348 @default.
- W2563117118 cites W2111072639 @default.
- W2563117118 cites W2137136880 @default.
- W2563117118 cites W2141695047 @default.
- W2563117118 cites W2142544077 @default.
- W2563117118 cites W2147368400 @default.
- W2563117118 cites W2153631847 @default.
- W2563117118 cites W2165967751 @default.
- W2563117118 doi "https://doi.org/10.1515/jisys-2015-0021" @default.
- W2563117118 hasPublicationYear "2016" @default.
- W2563117118 type Work @default.
- W2563117118 sameAs 2563117118 @default.
- W2563117118 citedByCount "5" @default.
- W2563117118 countsByYear W25631171182017 @default.
- W2563117118 countsByYear W25631171182019 @default.
- W2563117118 countsByYear W25631171182020 @default.
- W2563117118 countsByYear W25631171182023 @default.
- W2563117118 crossrefType "journal-article" @default.
- W2563117118 hasAuthorship W2563117118A5049457361 @default.
- W2563117118 hasAuthorship W2563117118A5050406307 @default.
- W2563117118 hasAuthorship W2563117118A5075771510 @default.
- W2563117118 hasAuthorship W2563117118A5076453382 @default.
- W2563117118 hasAuthorship W2563117118A5087113469 @default.
- W2563117118 hasConcept C105795698 @default.
- W2563117118 hasConcept C108010975 @default.
- W2563117118 hasConcept C119857082 @default.
- W2563117118 hasConcept C12267149 @default.
- W2563117118 hasConcept C13280743 @default.
- W2563117118 hasConcept C153180895 @default.
- W2563117118 hasConcept C154945302 @default.
- W2563117118 hasConcept C185798385 @default.
- W2563117118 hasConcept C205649164 @default.
- W2563117118 hasConcept C2780150128 @default.
- W2563117118 hasConcept C33923547 @default.
- W2563117118 hasConcept C41008148 @default.
- W2563117118 hasConcept C50644808 @default.
- W2563117118 hasConcept C6557445 @default.
- W2563117118 hasConcept C73555534 @default.
- W2563117118 hasConcept C83546350 @default.
- W2563117118 hasConcept C86803240 @default.
- W2563117118 hasConceptScore W2563117118C105795698 @default.
- W2563117118 hasConceptScore W2563117118C108010975 @default.
- W2563117118 hasConceptScore W2563117118C119857082 @default.
- W2563117118 hasConceptScore W2563117118C12267149 @default.
- W2563117118 hasConceptScore W2563117118C13280743 @default.
- W2563117118 hasConceptScore W2563117118C153180895 @default.
- W2563117118 hasConceptScore W2563117118C154945302 @default.
- W2563117118 hasConceptScore W2563117118C185798385 @default.
- W2563117118 hasConceptScore W2563117118C205649164 @default.
- W2563117118 hasConceptScore W2563117118C2780150128 @default.
- W2563117118 hasConceptScore W2563117118C33923547 @default.
- W2563117118 hasConceptScore W2563117118C41008148 @default.
- W2563117118 hasConceptScore W2563117118C50644808 @default.
- W2563117118 hasConceptScore W2563117118C6557445 @default.
- W2563117118 hasConceptScore W2563117118C73555534 @default.
- W2563117118 hasConceptScore W2563117118C83546350 @default.
- W2563117118 hasConceptScore W2563117118C86803240 @default.
- W2563117118 hasIssue "4" @default.
- W2563117118 hasLocation W25631171181 @default.
- W2563117118 hasLocation W25631171182 @default.
- W2563117118 hasOpenAccess W2563117118 @default.
- W2563117118 hasPrimaryLocation W25631171181 @default.
- W2563117118 hasRelatedWork W2041399278 @default.
- W2563117118 hasRelatedWork W2056016498 @default.
- W2563117118 hasRelatedWork W2136184105 @default.
- W2563117118 hasRelatedWork W2160451891 @default.
- W2563117118 hasRelatedWork W2277768259 @default.
- W2563117118 hasRelatedWork W2336974148 @default.
- W2563117118 hasRelatedWork W3013515612 @default.
- W2563117118 hasRelatedWork W3185179407 @default.
- W2563117118 hasRelatedWork W2187500075 @default.
- W2563117118 hasRelatedWork W2345184372 @default.
- W2563117118 hasVolume "25" @default.
- W2563117118 isParatext "false" @default.
- W2563117118 isRetracted "false" @default.