Matches in SemOpenAlex for { <https://semopenalex.org/work/W2563465138> ?p ?o ?g. }
- W2563465138 abstract "In this paper we focus on Maximum Likelihood Estimation (MLE) technique for classification on Grassmann manifolds using matrix variate Bingham density function. Unlike the conventional techniques for multivariate distributions in the existing literature e.g., Markov chain Monte Carlo (MCMC) sampling methods, non-parametric methods, Expectation Maximisation (EM) iterative methods or exact methods, we demonstrate a new way of parametric modelling for classification that is strictly based on normalising constant. The evaluation of normalising constant is based on the matrix-variate Saddle Point Approximation (SPA). The Maximum Likelihood Estimation (MLE) is directly employed on the proposed manifold based Bingham density function via simple Bayesian classifier. For numerical experiments a 3-class classification example is considered by using real world Caltech 101 and DynTex++ database. We have compared our average classification accuracy rate with the baseline results taken from the existing state of the art techniques, and found that our method outperforms or at least best comparable." @default.
- W2563465138 created "2017-01-06" @default.
- W2563465138 creator A5012997783 @default.
- W2563465138 creator A5015817857 @default.
- W2563465138 creator A5066854398 @default.
- W2563465138 date "2016-11-01" @default.
- W2563465138 modified "2023-09-26" @default.
- W2563465138 title "MLE-Based Learning on Grassmann Manifolds" @default.
- W2563465138 cites W1688775013 @default.
- W2563465138 cites W1785227512 @default.
- W2563465138 cites W1820849028 @default.
- W2563465138 cites W1821938769 @default.
- W2563465138 cites W185495346 @default.
- W2563465138 cites W1964491636 @default.
- W2563465138 cites W1966385142 @default.
- W2563465138 cites W1974637548 @default.
- W2563465138 cites W1986827948 @default.
- W2563465138 cites W1988130573 @default.
- W2563465138 cites W1989494851 @default.
- W2563465138 cites W1995963238 @default.
- W2563465138 cites W2006766164 @default.
- W2563465138 cites W2006963646 @default.
- W2563465138 cites W2025064394 @default.
- W2563465138 cites W2027492035 @default.
- W2563465138 cites W2036068690 @default.
- W2563465138 cites W2049361783 @default.
- W2563465138 cites W2056526820 @default.
- W2563465138 cites W2078118580 @default.
- W2563465138 cites W2088449330 @default.
- W2563465138 cites W2089373496 @default.
- W2563465138 cites W2102002080 @default.
- W2563465138 cites W2108036604 @default.
- W2563465138 cites W2116022929 @default.
- W2563465138 cites W2136111578 @default.
- W2563465138 cites W2139916508 @default.
- W2563465138 cites W2142040002 @default.
- W2563465138 cites W2145001205 @default.
- W2563465138 cites W2146966357 @default.
- W2563465138 cites W2147388619 @default.
- W2563465138 cites W2149466042 @default.
- W2563465138 cites W2150515037 @default.
- W2563465138 cites W2151408393 @default.
- W2563465138 cites W2160204131 @default.
- W2563465138 cites W2166049352 @default.
- W2563465138 cites W2167581801 @default.
- W2563465138 cites W2184356410 @default.
- W2563465138 cites W2207669591 @default.
- W2563465138 cites W2218665234 @default.
- W2563465138 cites W2224882246 @default.
- W2563465138 cites W2340944510 @default.
- W2563465138 cites W2398028250 @default.
- W2563465138 cites W2500307206 @default.
- W2563465138 doi "https://doi.org/10.1109/dicta.2016.7797063" @default.
- W2563465138 hasPublicationYear "2016" @default.
- W2563465138 type Work @default.
- W2563465138 sameAs 2563465138 @default.
- W2563465138 citedByCount "0" @default.
- W2563465138 crossrefType "proceedings-article" @default.
- W2563465138 hasAuthorship W2563465138A5012997783 @default.
- W2563465138 hasAuthorship W2563465138A5015817857 @default.
- W2563465138 hasAuthorship W2563465138A5066854398 @default.
- W2563465138 hasConcept C105795698 @default.
- W2563465138 hasConcept C111350023 @default.
- W2563465138 hasConcept C11413529 @default.
- W2563465138 hasConcept C117251300 @default.
- W2563465138 hasConcept C153180895 @default.
- W2563465138 hasConcept C154945302 @default.
- W2563465138 hasConcept C185429906 @default.
- W2563465138 hasConcept C189508267 @default.
- W2563465138 hasConcept C19499675 @default.
- W2563465138 hasConcept C197055811 @default.
- W2563465138 hasConcept C28826006 @default.
- W2563465138 hasConcept C33923547 @default.
- W2563465138 hasConcept C41008148 @default.
- W2563465138 hasConceptScore W2563465138C105795698 @default.
- W2563465138 hasConceptScore W2563465138C111350023 @default.
- W2563465138 hasConceptScore W2563465138C11413529 @default.
- W2563465138 hasConceptScore W2563465138C117251300 @default.
- W2563465138 hasConceptScore W2563465138C153180895 @default.
- W2563465138 hasConceptScore W2563465138C154945302 @default.
- W2563465138 hasConceptScore W2563465138C185429906 @default.
- W2563465138 hasConceptScore W2563465138C189508267 @default.
- W2563465138 hasConceptScore W2563465138C19499675 @default.
- W2563465138 hasConceptScore W2563465138C197055811 @default.
- W2563465138 hasConceptScore W2563465138C28826006 @default.
- W2563465138 hasConceptScore W2563465138C33923547 @default.
- W2563465138 hasConceptScore W2563465138C41008148 @default.
- W2563465138 hasLocation W25634651381 @default.
- W2563465138 hasOpenAccess W2563465138 @default.
- W2563465138 hasPrimaryLocation W25634651381 @default.
- W2563465138 hasRelatedWork W1985651808 @default.
- W2563465138 hasRelatedWork W2057658881 @default.
- W2563465138 hasRelatedWork W2080964220 @default.
- W2563465138 hasRelatedWork W2100688788 @default.
- W2563465138 hasRelatedWork W2100784750 @default.
- W2563465138 hasRelatedWork W2123224929 @default.
- W2563465138 hasRelatedWork W2143552366 @default.
- W2563465138 hasRelatedWork W2153238387 @default.
- W2563465138 hasRelatedWork W2157232038 @default.
- W2563465138 hasRelatedWork W2279189028 @default.