Matches in SemOpenAlex for { <https://semopenalex.org/work/W2563471330> ?p ?o ?g. }
Showing items 1 to 93 of
93
with 100 items per page.
- W2563471330 endingPage "1411" @default.
- W2563471330 startingPage "1401" @default.
- W2563471330 abstract "Data reduction can increase generalization abilities of the learning model and shorten learning time. It can be particularly helpful in analyzing big data sets. This paper focuses on the machine learning from examples with data reduction. In the paper data reduction is carried out by selection of r elevant instances, called prototypes. The discussed approach bases on the assumption that the selection of prototypes is carried-out by a team of agents and that the prototype instances are selected from clusters of instances under the constraint that from each cluster a single prototype is obtained. For cluster initialization the kernel-based fuzzy clustering algorithm is used. Main feature of the proposed approach is integrating data reduction with the stacking technique. Stacked generalization assures diversification among prototypes, and hence, base classifiers. To validate the proposed approach we have carried-out computational experiment. We have also evaluated experimentally the influence of the clustering method and the number of stacking folds used, on the classification accuracy." @default.
- W2563471330 created "2017-01-06" @default.
- W2563471330 creator A5042454628 @default.
- W2563471330 creator A5069454823 @default.
- W2563471330 date "2017-01-30" @default.
- W2563471330 modified "2023-10-12" @default.
- W2563471330 title "Learning from examples with data reduction and stacked generalization" @default.
- W2563471330 cites W1566813990 @default.
- W2563471330 cites W1572404648 @default.
- W2563471330 cites W1965551184 @default.
- W2563471330 cites W1985702987 @default.
- W2563471330 cites W1994410331 @default.
- W2563471330 cites W2008088085 @default.
- W2563471330 cites W2035470992 @default.
- W2563471330 cites W2068514419 @default.
- W2563471330 cites W2074144322 @default.
- W2563471330 cites W2081105544 @default.
- W2563471330 cites W2092353981 @default.
- W2563471330 cites W2104205459 @default.
- W2563471330 cites W2109011280 @default.
- W2563471330 cites W2112048775 @default.
- W2563471330 cites W2119391140 @default.
- W2563471330 cites W2122496402 @default.
- W2563471330 cites W2122855851 @default.
- W2563471330 cites W2151537585 @default.
- W2563471330 cites W2162583212 @default.
- W2563471330 cites W2587077193 @default.
- W2563471330 cites W28412257 @default.
- W2563471330 cites W4244238212 @default.
- W2563471330 cites W4249247926 @default.
- W2563471330 doi "https://doi.org/10.3233/jifs-169137" @default.
- W2563471330 hasPublicationYear "2017" @default.
- W2563471330 type Work @default.
- W2563471330 sameAs 2563471330 @default.
- W2563471330 citedByCount "7" @default.
- W2563471330 countsByYear W25634713302017 @default.
- W2563471330 countsByYear W25634713302018 @default.
- W2563471330 countsByYear W25634713302019 @default.
- W2563471330 countsByYear W25634713302020 @default.
- W2563471330 crossrefType "journal-article" @default.
- W2563471330 hasAuthorship W2563471330A5042454628 @default.
- W2563471330 hasAuthorship W2563471330A5069454823 @default.
- W2563471330 hasConcept C111335779 @default.
- W2563471330 hasConcept C114466953 @default.
- W2563471330 hasConcept C119857082 @default.
- W2563471330 hasConcept C124101348 @default.
- W2563471330 hasConcept C134306372 @default.
- W2563471330 hasConcept C153180895 @default.
- W2563471330 hasConcept C153914771 @default.
- W2563471330 hasConcept C154945302 @default.
- W2563471330 hasConcept C177148314 @default.
- W2563471330 hasConcept C199360897 @default.
- W2563471330 hasConcept C2524010 @default.
- W2563471330 hasConcept C33923547 @default.
- W2563471330 hasConcept C41008148 @default.
- W2563471330 hasConcept C70518039 @default.
- W2563471330 hasConcept C73555534 @default.
- W2563471330 hasConceptScore W2563471330C111335779 @default.
- W2563471330 hasConceptScore W2563471330C114466953 @default.
- W2563471330 hasConceptScore W2563471330C119857082 @default.
- W2563471330 hasConceptScore W2563471330C124101348 @default.
- W2563471330 hasConceptScore W2563471330C134306372 @default.
- W2563471330 hasConceptScore W2563471330C153180895 @default.
- W2563471330 hasConceptScore W2563471330C153914771 @default.
- W2563471330 hasConceptScore W2563471330C154945302 @default.
- W2563471330 hasConceptScore W2563471330C177148314 @default.
- W2563471330 hasConceptScore W2563471330C199360897 @default.
- W2563471330 hasConceptScore W2563471330C2524010 @default.
- W2563471330 hasConceptScore W2563471330C33923547 @default.
- W2563471330 hasConceptScore W2563471330C41008148 @default.
- W2563471330 hasConceptScore W2563471330C70518039 @default.
- W2563471330 hasConceptScore W2563471330C73555534 @default.
- W2563471330 hasIssue "2" @default.
- W2563471330 hasLocation W25634713301 @default.
- W2563471330 hasOpenAccess W2563471330 @default.
- W2563471330 hasPrimaryLocation W25634713301 @default.
- W2563471330 hasRelatedWork W2167718646 @default.
- W2563471330 hasRelatedWork W2292958489 @default.
- W2563471330 hasRelatedWork W2315029857 @default.
- W2563471330 hasRelatedWork W2339674921 @default.
- W2563471330 hasRelatedWork W2384421519 @default.
- W2563471330 hasRelatedWork W2557500211 @default.
- W2563471330 hasRelatedWork W2810502197 @default.
- W2563471330 hasRelatedWork W2989932438 @default.
- W2563471330 hasRelatedWork W3208326136 @default.
- W2563471330 hasRelatedWork W4363647247 @default.
- W2563471330 hasVolume "32" @default.
- W2563471330 isParatext "false" @default.
- W2563471330 isRetracted "false" @default.
- W2563471330 magId "2563471330" @default.
- W2563471330 workType "article" @default.