Matches in SemOpenAlex for { <https://semopenalex.org/work/W2563804944> ?p ?o ?g. }
- W2563804944 abstract "Multivariate calibration is an important procedure for analytical chemistry. Automated or self‐configuring methods can be used by scientists who lack expertise, may be embedded into data processing pipelines, and are less prone to user bias; however, the development of such algorithms is often neglected by the chemometrics community. Support vector regression (SVR) is a powerful method for accommodating megavariate data. SVR offers the advantage of fast calibration and flexibility in a variety of loss functions (ie, minimization of the residual error). By embedding bootstrapped Latin partitions (BLPs) into the calibration, the key parameter, the cost C , can be optimized to furnish an automated method. The methods are termed super SVR (sSVR). The BLP predictions of the calibration set accurately model the external prediction error of the entire calibration set. Prediction rates for super partial least squares (sPLS) are compared with sSVRs using three loss functions, Gauss, Laplace, and Huber. For linear data with uniformly distributed noise, sPLS is faster and gave better predictions. However, for data with outliers or a real data set of single‐beam near infrared spectra of bovine plasma, gasoline, and wheat, the sSVRs performed better than sPLS, and generally, the Huber loss function gave the best results." @default.
- W2563804944 created "2017-01-06" @default.
- W2563804944 creator A5011112463 @default.
- W2563804944 date "2016-12-28" @default.
- W2563804944 modified "2023-09-24" @default.
- W2563804944 title "Automated support vector regression" @default.
- W2563804944 cites W1495461900 @default.
- W2563804944 cites W1964357740 @default.
- W2563804944 cites W1967791720 @default.
- W2563804944 cites W1973660470 @default.
- W2563804944 cites W1977906666 @default.
- W2563804944 cites W1988673414 @default.
- W2563804944 cites W1990536239 @default.
- W2563804944 cites W2006203663 @default.
- W2563804944 cites W2012124341 @default.
- W2563804944 cites W2014736305 @default.
- W2563804944 cites W2020315430 @default.
- W2563804944 cites W2021211279 @default.
- W2563804944 cites W2022449465 @default.
- W2563804944 cites W2028785071 @default.
- W2563804944 cites W2029372760 @default.
- W2563804944 cites W2055563201 @default.
- W2563804944 cites W2055817716 @default.
- W2563804944 cites W2056189883 @default.
- W2563804944 cites W2062063170 @default.
- W2563804944 cites W2064874710 @default.
- W2563804944 cites W2075624239 @default.
- W2563804944 cites W2082934308 @default.
- W2563804944 cites W2087347434 @default.
- W2563804944 cites W2087833865 @default.
- W2563804944 cites W2089731791 @default.
- W2563804944 cites W2090154615 @default.
- W2563804944 cites W2091481568 @default.
- W2563804944 cites W2097658157 @default.
- W2563804944 cites W2101647786 @default.
- W2563804944 cites W2103581045 @default.
- W2563804944 cites W2119005014 @default.
- W2563804944 cites W2131248453 @default.
- W2563804944 cites W2138855712 @default.
- W2563804944 cites W2140196823 @default.
- W2563804944 cites W2149315344 @default.
- W2563804944 cites W2158863190 @default.
- W2563804944 cites W2275210491 @default.
- W2563804944 cites W2473238561 @default.
- W2563804944 cites W2501092689 @default.
- W2563804944 cites W2517880718 @default.
- W2563804944 cites W2765486103 @default.
- W2563804944 cites W4239510810 @default.
- W2563804944 doi "https://doi.org/10.1002/cem.2867" @default.
- W2563804944 hasPublicationYear "2016" @default.
- W2563804944 type Work @default.
- W2563804944 sameAs 2563804944 @default.
- W2563804944 citedByCount "12" @default.
- W2563804944 countsByYear W25638049442017 @default.
- W2563804944 countsByYear W25638049442018 @default.
- W2563804944 countsByYear W25638049442019 @default.
- W2563804944 countsByYear W25638049442020 @default.
- W2563804944 countsByYear W25638049442022 @default.
- W2563804944 countsByYear W25638049442023 @default.
- W2563804944 crossrefType "journal-article" @default.
- W2563804944 hasAuthorship W2563804944A5011112463 @default.
- W2563804944 hasConcept C105795698 @default.
- W2563804944 hasConcept C11413529 @default.
- W2563804944 hasConcept C119857082 @default.
- W2563804944 hasConcept C12267149 @default.
- W2563804944 hasConcept C124101348 @default.
- W2563804944 hasConcept C151304367 @default.
- W2563804944 hasConcept C154945302 @default.
- W2563804944 hasConcept C165838908 @default.
- W2563804944 hasConcept C22354355 @default.
- W2563804944 hasConcept C33923547 @default.
- W2563804944 hasConcept C41008148 @default.
- W2563804944 hasConcept C58489278 @default.
- W2563804944 hasConcept C79337645 @default.
- W2563804944 hasConceptScore W2563804944C105795698 @default.
- W2563804944 hasConceptScore W2563804944C11413529 @default.
- W2563804944 hasConceptScore W2563804944C119857082 @default.
- W2563804944 hasConceptScore W2563804944C12267149 @default.
- W2563804944 hasConceptScore W2563804944C124101348 @default.
- W2563804944 hasConceptScore W2563804944C151304367 @default.
- W2563804944 hasConceptScore W2563804944C154945302 @default.
- W2563804944 hasConceptScore W2563804944C165838908 @default.
- W2563804944 hasConceptScore W2563804944C22354355 @default.
- W2563804944 hasConceptScore W2563804944C33923547 @default.
- W2563804944 hasConceptScore W2563804944C41008148 @default.
- W2563804944 hasConceptScore W2563804944C58489278 @default.
- W2563804944 hasConceptScore W2563804944C79337645 @default.
- W2563804944 hasIssue "4" @default.
- W2563804944 hasLocation W25638049441 @default.
- W2563804944 hasOpenAccess W2563804944 @default.
- W2563804944 hasPrimaryLocation W25638049441 @default.
- W2563804944 hasRelatedWork W1974672306 @default.
- W2563804944 hasRelatedWork W2010668119 @default.
- W2563804944 hasRelatedWork W2027435580 @default.
- W2563804944 hasRelatedWork W2117028753 @default.
- W2563804944 hasRelatedWork W2158443540 @default.
- W2563804944 hasRelatedWork W233361446 @default.
- W2563804944 hasRelatedWork W2359185137 @default.
- W2563804944 hasRelatedWork W2467592970 @default.
- W2563804944 hasRelatedWork W3147000479 @default.