Matches in SemOpenAlex for { <https://semopenalex.org/work/W2563966734> ?p ?o ?g. }
- W2563966734 abstract "Complex fluids refer to those with internal microstructures whose evolution affects the macroscopic dynamics of the material, especially the rheology [7]. Examples include polymer solutions and melts, liquid crystals, gels and micellar solutions. Such materials often have great practical utilities since the microstructure can be manipulated via processing flow to produce outstanding mechanical, optical or thermal properties. A good example is main-chain liquid-crystalline polymers (LCPs). Their molecular backbone is rodlike, with a degree of rigidity, such that the polymer assumes an anisotropic orientational order due to spontaneous alignment of the molecules. This order, further enhanced by extensional flows, leads to exceedingly high strength and modulus in the Kevlar fiber, a commercially successful product of du Pont. An important way of utilizing complex fluids is through composites. By blending two immiscible components together, one may derive novel or enhanced properties from the composite, and this is often a more economical route to new materials than synthesis. Moreover, the properties of composites may be tuned to suit a particular application by varying the composition, concentration and, most importantly, the interfacial morphology. Take polymer blends for example [11]. Under optimal processing conditions, the dispersed phase is stretched from drops into a fibrillar morphology. Upon solidification, the long fibers act as in situ reinforcement and impart great strength to the composite. The effect is particularly strong if the fibrillar phase is liquid crystalline [2]. The dispersed phase may also be solid as in colloidal dispersions, or gas as in thermoplastic foams. From a scientific viewpoint, the essential physics in all such composites is the coupling between interfacial dynamics and complex rheology of the components. Despite their practical importance, our current knowledge of two-phase complex fluids is very limited. The main difficulty is that these materials have a myriad of internal boundaries, which move, deform, break up and reconnect during processing. This leads to a seemingly intractable mathematical problem, and also hampers experimental observation and measurement. A secondary difficulty is that the rheology of each component alone is highly complex, with the internal microstructure coupled with the flow field. Thus, these materials feature dynamic coupling of three disparate length scales: molecular conformation inside each component, mesoscopic interfacial morphology and macroscopic hydrodynamics. An understanding of the interfacial dynamics in complex fluids is a major fundamental challenge as well as a significant practical need. The problem involves several traditional disciplines: mathematical modeling, numerical computation, soft-matter physics, fluid mechanics, material science and engineering. An objective of the workshop is to explore new research directions in the context of multi-disciplinary interactions." @default.
- W2563966734 created "2017-01-06" @default.
- W2563966734 creator A5014742621 @default.
- W2563966734 creator A5063171859 @default.
- W2563966734 date "2016-01-01" @default.
- W2563966734 modified "2023-09-26" @default.
- W2563966734 title "Interfacial dynamics in complex fluids" @default.
- W2563966734 cites W1480553702 @default.
- W2563966734 cites W1504463291 @default.
- W2563966734 cites W1527313833 @default.
- W2563966734 cites W1529469423 @default.
- W2563966734 cites W1569566630 @default.
- W2563966734 cites W1602259421 @default.
- W2563966734 cites W1774151066 @default.
- W2563966734 cites W1966071858 @default.
- W2563966734 cites W1967903957 @default.
- W2563966734 cites W1974873668 @default.
- W2563966734 cites W1974920005 @default.
- W2563966734 cites W1977283317 @default.
- W2563966734 cites W1978988431 @default.
- W2563966734 cites W1989741511 @default.
- W2563966734 cites W1990282067 @default.
- W2563966734 cites W1993612582 @default.
- W2563966734 cites W1998580872 @default.
- W2563966734 cites W1999475466 @default.
- W2563966734 cites W1999749629 @default.
- W2563966734 cites W2010340863 @default.
- W2563966734 cites W2011180288 @default.
- W2563966734 cites W201414242 @default.
- W2563966734 cites W2019352951 @default.
- W2563966734 cites W2024318665 @default.
- W2563966734 cites W2030063085 @default.
- W2563966734 cites W2031435452 @default.
- W2563966734 cites W2032574822 @default.
- W2563966734 cites W2034738653 @default.
- W2563966734 cites W2040873787 @default.
- W2563966734 cites W2045188476 @default.
- W2563966734 cites W2045390878 @default.
- W2563966734 cites W2045454476 @default.
- W2563966734 cites W2057412022 @default.
- W2563966734 cites W2063362533 @default.
- W2563966734 cites W2063725511 @default.
- W2563966734 cites W2064160889 @default.
- W2563966734 cites W2064593458 @default.
- W2563966734 cites W2066196783 @default.
- W2563966734 cites W2071282023 @default.
- W2563966734 cites W2073474861 @default.
- W2563966734 cites W2076329735 @default.
- W2563966734 cites W2081450731 @default.
- W2563966734 cites W2082170435 @default.
- W2563966734 cites W2084534232 @default.
- W2563966734 cites W2085438822 @default.
- W2563966734 cites W2092886188 @default.
- W2563966734 cites W2094284257 @default.
- W2563966734 cites W2102089106 @default.
- W2563966734 cites W2102774282 @default.
- W2563966734 cites W2110143653 @default.
- W2563966734 cites W2112729030 @default.
- W2563966734 cites W2119794147 @default.
- W2563966734 cites W2147722083 @default.
- W2563966734 cites W2151306679 @default.
- W2563966734 cites W2159481146 @default.
- W2563966734 cites W2191190245 @default.
- W2563966734 cites W892231215 @default.
- W2563966734 cites W99078787 @default.
- W2563966734 doi "https://doi.org/10.1299/jfst.2016jfst0021" @default.
- W2563966734 hasPublicationYear "2016" @default.
- W2563966734 type Work @default.
- W2563966734 sameAs 2563966734 @default.
- W2563966734 citedByCount "3" @default.
- W2563966734 countsByYear W25639667342017 @default.
- W2563966734 countsByYear W25639667342018 @default.
- W2563966734 crossrefType "journal-article" @default.
- W2563966734 hasAuthorship W2563966734A5014742621 @default.
- W2563966734 hasAuthorship W2563966734A5063171859 @default.
- W2563966734 hasBestOaLocation W25639667341 @default.
- W2563966734 hasConcept C119887631 @default.
- W2563966734 hasConcept C121332964 @default.
- W2563966734 hasConcept C145912823 @default.
- W2563966734 hasConcept C192562407 @default.
- W2563966734 hasConcept C24890656 @default.
- W2563966734 hasConcept C57879066 @default.
- W2563966734 hasConceptScore W2563966734C119887631 @default.
- W2563966734 hasConceptScore W2563966734C121332964 @default.
- W2563966734 hasConceptScore W2563966734C145912823 @default.
- W2563966734 hasConceptScore W2563966734C192562407 @default.
- W2563966734 hasConceptScore W2563966734C24890656 @default.
- W2563966734 hasConceptScore W2563966734C57879066 @default.
- W2563966734 hasLocation W25639667341 @default.
- W2563966734 hasLocation W25639667342 @default.
- W2563966734 hasLocation W25639667343 @default.
- W2563966734 hasOpenAccess W2563966734 @default.
- W2563966734 hasPrimaryLocation W25639667341 @default.
- W2563966734 hasRelatedWork W127589547 @default.
- W2563966734 hasRelatedWork W2323490956 @default.
- W2563966734 hasRelatedWork W2558421660 @default.
- W2563966734 hasRelatedWork W2598462939 @default.
- W2563966734 hasRelatedWork W2898370298 @default.
- W2563966734 hasRelatedWork W2899084033 @default.
- W2563966734 hasRelatedWork W2908520357 @default.