Matches in SemOpenAlex for { <https://semopenalex.org/work/W2564133618> ?p ?o ?g. }
- W2564133618 endingPage "75" @default.
- W2564133618 startingPage "58" @default.
- W2564133618 abstract "Statistical training psychology focuses on frequentist methods. Bayesian methods are an alternative to standard frequentist methods. This article provides researchers with an introduction to fundamental ideas in Bayesian modeling. We use data from an electroencephalogram (EEG) and anxiety study to illustrate Bayesian models. Specifically, the models examine the relationship between error-related negativity (ERN), a particular event-related potential, and trait anxiety. Methodological topics covered include: how to set up a regression model in a Bayesian framework, specifying priors, examining convergence of the model, visualizing and interpreting posterior distributions, interval estimates, expected and predicted values, and model comparison tools. We also discuss situations where Bayesian methods can outperform frequentist methods as well has how to specify more complicated regression models. Finally, we conclude with recommendations about reporting guidelines for those using Bayesian methods in their own research. We provide data and R code for replicating our analyses." @default.
- W2564133618 created "2017-01-06" @default.
- W2564133618 creator A5031520095 @default.
- W2564133618 creator A5043566428 @default.
- W2564133618 date "2017-11-01" @default.
- W2564133618 modified "2023-10-15" @default.
- W2564133618 title "An introduction to using Bayesian linear regression with clinical data" @default.
- W2564133618 cites W1499894863 @default.
- W2564133618 cites W1536497620 @default.
- W2564133618 cites W1897139626 @default.
- W2564133618 cites W1913823733 @default.
- W2564133618 cites W1925740804 @default.
- W2564133618 cites W1978662219 @default.
- W2564133618 cites W1994126920 @default.
- W2564133618 cites W1994757268 @default.
- W2564133618 cites W2004168513 @default.
- W2564133618 cites W2008540085 @default.
- W2564133618 cites W2008992734 @default.
- W2564133618 cites W2024086275 @default.
- W2564133618 cites W2030360178 @default.
- W2564133618 cites W2032062976 @default.
- W2564133618 cites W2057028953 @default.
- W2564133618 cites W2058317558 @default.
- W2564133618 cites W2064510408 @default.
- W2564133618 cites W2064604759 @default.
- W2564133618 cites W2086733802 @default.
- W2564133618 cites W2116618538 @default.
- W2564133618 cites W2119303750 @default.
- W2564133618 cites W2122905005 @default.
- W2564133618 cites W2144981148 @default.
- W2564133618 cites W2147936796 @default.
- W2564133618 cites W2156500065 @default.
- W2564133618 cites W2157335584 @default.
- W2564133618 cites W2159532703 @default.
- W2564133618 cites W2161498332 @default.
- W2564133618 cites W2217911164 @default.
- W2564133618 cites W2236017730 @default.
- W2564133618 cites W2277298401 @default.
- W2564133618 cites W2301406519 @default.
- W2564133618 cites W2322006099 @default.
- W2564133618 cites W2345909308 @default.
- W2564133618 cites W2403222820 @default.
- W2564133618 cites W2465832829 @default.
- W2564133618 cites W2479596070 @default.
- W2564133618 doi "https://doi.org/10.1016/j.brat.2016.12.016" @default.
- W2564133618 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/28081861" @default.
- W2564133618 hasPublicationYear "2017" @default.
- W2564133618 type Work @default.
- W2564133618 sameAs 2564133618 @default.
- W2564133618 citedByCount "43" @default.
- W2564133618 countsByYear W25641336182017 @default.
- W2564133618 countsByYear W25641336182018 @default.
- W2564133618 countsByYear W25641336182019 @default.
- W2564133618 countsByYear W25641336182020 @default.
- W2564133618 countsByYear W25641336182021 @default.
- W2564133618 countsByYear W25641336182022 @default.
- W2564133618 countsByYear W25641336182023 @default.
- W2564133618 crossrefType "journal-article" @default.
- W2564133618 hasAuthorship W2564133618A5031520095 @default.
- W2564133618 hasAuthorship W2564133618A5043566428 @default.
- W2564133618 hasConcept C101112237 @default.
- W2564133618 hasConcept C105795698 @default.
- W2564133618 hasConcept C107673813 @default.
- W2564133618 hasConcept C119857082 @default.
- W2564133618 hasConcept C149569020 @default.
- W2564133618 hasConcept C149782125 @default.
- W2564133618 hasConcept C154945302 @default.
- W2564133618 hasConcept C160234255 @default.
- W2564133618 hasConcept C162376815 @default.
- W2564133618 hasConcept C177769412 @default.
- W2564133618 hasConcept C33923547 @default.
- W2564133618 hasConcept C37903108 @default.
- W2564133618 hasConcept C41008148 @default.
- W2564133618 hasConceptScore W2564133618C101112237 @default.
- W2564133618 hasConceptScore W2564133618C105795698 @default.
- W2564133618 hasConceptScore W2564133618C107673813 @default.
- W2564133618 hasConceptScore W2564133618C119857082 @default.
- W2564133618 hasConceptScore W2564133618C149569020 @default.
- W2564133618 hasConceptScore W2564133618C149782125 @default.
- W2564133618 hasConceptScore W2564133618C154945302 @default.
- W2564133618 hasConceptScore W2564133618C160234255 @default.
- W2564133618 hasConceptScore W2564133618C162376815 @default.
- W2564133618 hasConceptScore W2564133618C177769412 @default.
- W2564133618 hasConceptScore W2564133618C33923547 @default.
- W2564133618 hasConceptScore W2564133618C37903108 @default.
- W2564133618 hasConceptScore W2564133618C41008148 @default.
- W2564133618 hasLocation W25641336181 @default.
- W2564133618 hasLocation W25641336182 @default.
- W2564133618 hasOpenAccess W2564133618 @default.
- W2564133618 hasPrimaryLocation W25641336181 @default.
- W2564133618 hasRelatedWork W2072494828 @default.
- W2564133618 hasRelatedWork W2135165016 @default.
- W2564133618 hasRelatedWork W2810791492 @default.
- W2564133618 hasRelatedWork W2889116641 @default.
- W2564133618 hasRelatedWork W3085442668 @default.
- W2564133618 hasRelatedWork W3097498695 @default.
- W2564133618 hasRelatedWork W3124625789 @default.
- W2564133618 hasRelatedWork W3134107045 @default.