Matches in SemOpenAlex for { <https://semopenalex.org/work/W2564164259> ?p ?o ?g. }
Showing items 1 to 59 of
59
with 100 items per page.
- W2564164259 abstract "Meta-analysis can only compare studies with the same interventions, while a network meta-analysis can analyze studies with different interventions. Without medical data for direct comparisons, network meta-analysis can utilize existing trials to assess the relative efficacy of competing treatments. Three classes of statistical models are proposed to perform a network meta-analysis: fixed-effects, random-effects, and mixed-effects (meta-regression). The most appropriate model should be selected with the aid of a series of statistical tests including I2 statistic for heterogeneity and DIC for model fitness. Bayesian network meta-analysis provides pooled effect sizes (odds ratio for dichotomous outcome) for each treatment and their 95% probability credible intervals. After a systematic literature review, 20 randomized clinical trials of biologic anti-rheumatic therapies in combination with methotrexate in rheumatoid arthritis patients were identified. Random-effects model was used for ACR20 and ACR70 criteria treatment outcome whereas the mixed-effects model was used for ACR50 treatment outcome. Based on the analysis, we found that all biologics DMARDs were superior to placebo except for ANA in all datasets and RTX in ACR70 dataset. ETN was had the highest probability to be the best treatment in all three datasets. CTZ had the highest probability to be the second best option in ACR20 and ACR50 datasets, and TCZ held the second place in the ACR70 dataset. The rest of the rank probabilities vary by dataset but placebo was the lowest ranked option in all datasets. Therefore, despite the limitations of this study, the results are consistent with current knowledge that biologic DMARDs are superior to placebo and although more research remains to be done, ETN may be the most effective option for rheumatoid arthritis." @default.
- W2564164259 created "2017-01-06" @default.
- W2564164259 creator A5023974795 @default.
- W2564164259 date "2020-06-10" @default.
- W2564164259 modified "2023-10-16" @default.
- W2564164259 title "Bayesian Network Meta-Analysis for Biologic Therapies in Rheumatoid Arthritis" @default.
- W2564164259 doi "https://doi.org/10.23860/thesis-ye-yizhou-2016" @default.
- W2564164259 hasPublicationYear "2020" @default.
- W2564164259 type Work @default.
- W2564164259 sameAs 2564164259 @default.
- W2564164259 citedByCount "0" @default.
- W2564164259 crossrefType "dissertation" @default.
- W2564164259 hasAuthorship W2564164259A5023974795 @default.
- W2564164259 hasBestOaLocation W25641642591 @default.
- W2564164259 hasConcept C105795698 @default.
- W2564164259 hasConcept C107673813 @default.
- W2564164259 hasConcept C126322002 @default.
- W2564164259 hasConcept C142724271 @default.
- W2564164259 hasConcept C168563851 @default.
- W2564164259 hasConcept C168743327 @default.
- W2564164259 hasConcept C204787440 @default.
- W2564164259 hasConcept C27081682 @default.
- W2564164259 hasConcept C2777575956 @default.
- W2564164259 hasConcept C2778886723 @default.
- W2564164259 hasConcept C33724603 @default.
- W2564164259 hasConcept C33923547 @default.
- W2564164259 hasConcept C71924100 @default.
- W2564164259 hasConcept C95190672 @default.
- W2564164259 hasConceptScore W2564164259C105795698 @default.
- W2564164259 hasConceptScore W2564164259C107673813 @default.
- W2564164259 hasConceptScore W2564164259C126322002 @default.
- W2564164259 hasConceptScore W2564164259C142724271 @default.
- W2564164259 hasConceptScore W2564164259C168563851 @default.
- W2564164259 hasConceptScore W2564164259C168743327 @default.
- W2564164259 hasConceptScore W2564164259C204787440 @default.
- W2564164259 hasConceptScore W2564164259C27081682 @default.
- W2564164259 hasConceptScore W2564164259C2777575956 @default.
- W2564164259 hasConceptScore W2564164259C2778886723 @default.
- W2564164259 hasConceptScore W2564164259C33724603 @default.
- W2564164259 hasConceptScore W2564164259C33923547 @default.
- W2564164259 hasConceptScore W2564164259C71924100 @default.
- W2564164259 hasConceptScore W2564164259C95190672 @default.
- W2564164259 hasLocation W25641642591 @default.
- W2564164259 hasOpenAccess W2564164259 @default.
- W2564164259 hasPrimaryLocation W25641642591 @default.
- W2564164259 hasRelatedWork W2055469806 @default.
- W2564164259 hasRelatedWork W2117685456 @default.
- W2564164259 hasRelatedWork W2147234629 @default.
- W2564164259 hasRelatedWork W2179885846 @default.
- W2564164259 hasRelatedWork W2231416078 @default.
- W2564164259 hasRelatedWork W2792076277 @default.
- W2564164259 hasRelatedWork W2981478968 @default.
- W2564164259 hasRelatedWork W3016908604 @default.
- W2564164259 hasRelatedWork W4292182933 @default.
- W2564164259 hasRelatedWork W4313829825 @default.
- W2564164259 isParatext "false" @default.
- W2564164259 isRetracted "false" @default.
- W2564164259 magId "2564164259" @default.
- W2564164259 workType "dissertation" @default.