Matches in SemOpenAlex for { <https://semopenalex.org/work/W2564190911> ?p ?o ?g. }
Showing items 1 to 71 of
71
with 100 items per page.
- W2564190911 abstract "Recent years, social networks are popular throughout the whole world. In China in particular, more people spend their time on social networks. Sina Weibo, as the most popular microblogs in China, records millions of microblogs from different population. In this paper, we study and understand sentimental feelings of Weibo by methods of mathematical statistics and analysis. Firstly, we propose a novel three-step extract (NTSE) algorithm to extract meaningful microblogs. Secondly, we identify the similarity of microblogs sent by specific population. Then, we present the naive Bayes algorithm to classify microblogs into three types: positive, negative or objective. For testing the algorithms, we collect Weibo data from specific population of Sina Weibo to form two datasets: student dataset and profession dataset. Some interesting findings include: i) around 20% microblogs are meaningless; ii) only half of microblogs' contents have expressed emotion; iii) students tend to post microblogs with negative emotion among the emotional trends; ix) six professional persons tend to publish positive microblogs. The results of our experiments show that students in five universities in China are more inclined to express negative feelings in the social networks. On contrary, some professional persons including IT, actors and writers and so on more likely to publish positive microblogs." @default.
- W2564190911 created "2017-01-06" @default.
- W2564190911 creator A5010774945 @default.
- W2564190911 creator A5018073672 @default.
- W2564190911 creator A5025193714 @default.
- W2564190911 creator A5046229888 @default.
- W2564190911 creator A5051300846 @default.
- W2564190911 date "2017-01-31" @default.
- W2564190911 modified "2023-10-16" @default.
- W2564190911 title "Content-based emotion classification in online social networks for Chinese Microblogs" @default.
- W2564190911 cites W1966344422 @default.
- W2564190911 cites W1968380849 @default.
- W2564190911 cites W1983447967 @default.
- W2564190911 cites W2033198212 @default.
- W2564190911 cites W2041493768 @default.
- W2564190911 cites W2073415627 @default.
- W2564190911 cites W2077587655 @default.
- W2564190911 cites W2081556646 @default.
- W2564190911 cites W2087511931 @default.
- W2564190911 cites W2111394372 @default.
- W2564190911 cites W2130619528 @default.
- W2564190911 cites W2155225268 @default.
- W2564190911 cites W2155447859 @default.
- W2564190911 cites W2170436435 @default.
- W2564190911 cites W2184299887 @default.
- W2564190911 cites W2415969251 @default.
- W2564190911 cites W375667340 @default.
- W2564190911 doi "https://doi.org/10.1145/3014812.3014866" @default.
- W2564190911 hasPublicationYear "2017" @default.
- W2564190911 type Work @default.
- W2564190911 sameAs 2564190911 @default.
- W2564190911 citedByCount "0" @default.
- W2564190911 crossrefType "proceedings-article" @default.
- W2564190911 hasAuthorship W2564190911A5010774945 @default.
- W2564190911 hasAuthorship W2564190911A5018073672 @default.
- W2564190911 hasAuthorship W2564190911A5025193714 @default.
- W2564190911 hasAuthorship W2564190911A5046229888 @default.
- W2564190911 hasAuthorship W2564190911A5051300846 @default.
- W2564190911 hasConcept C136764020 @default.
- W2564190911 hasConcept C143275388 @default.
- W2564190911 hasConcept C154945302 @default.
- W2564190911 hasConcept C204321447 @default.
- W2564190911 hasConcept C23123220 @default.
- W2564190911 hasConcept C41008148 @default.
- W2564190911 hasConcept C518677369 @default.
- W2564190911 hasConceptScore W2564190911C136764020 @default.
- W2564190911 hasConceptScore W2564190911C143275388 @default.
- W2564190911 hasConceptScore W2564190911C154945302 @default.
- W2564190911 hasConceptScore W2564190911C204321447 @default.
- W2564190911 hasConceptScore W2564190911C23123220 @default.
- W2564190911 hasConceptScore W2564190911C41008148 @default.
- W2564190911 hasConceptScore W2564190911C518677369 @default.
- W2564190911 hasFunder F4320321001 @default.
- W2564190911 hasFunder F4320323086 @default.
- W2564190911 hasLocation W25641909111 @default.
- W2564190911 hasOpenAccess W2564190911 @default.
- W2564190911 hasPrimaryLocation W25641909111 @default.
- W2564190911 hasRelatedWork W1981629440 @default.
- W2564190911 hasRelatedWork W2003784512 @default.
- W2564190911 hasRelatedWork W2296285930 @default.
- W2564190911 hasRelatedWork W23831623 @default.
- W2564190911 hasRelatedWork W2508527832 @default.
- W2564190911 hasRelatedWork W2533808799 @default.
- W2564190911 hasRelatedWork W2748952813 @default.
- W2564190911 hasRelatedWork W2916307614 @default.
- W2564190911 hasRelatedWork W3107474891 @default.
- W2564190911 hasRelatedWork W120485128 @default.
- W2564190911 isParatext "false" @default.
- W2564190911 isRetracted "false" @default.
- W2564190911 magId "2564190911" @default.
- W2564190911 workType "article" @default.