Matches in SemOpenAlex for { <https://semopenalex.org/work/W2564203602> ?p ?o ?g. }
- W2564203602 endingPage "371" @default.
- W2564203602 startingPage "359" @default.
- W2564203602 abstract "A series of iron(II) benzilate complexes (1-7) with general formula [(L)FeII(benzilate)]+ have been isolated and characterized to study the effect of supporting ligand (L) on the reactivity of metal-based oxidant generated in the reaction with dioxygen. Five tripodal N4 ligands (tris(2-pyridylmethyl)amine (TPA in 1), tris(6-methyl-2-pyridylmethyl)amine (6-Me3-TPA in 2), N1,N1-dimethyl-N2,N2-bis(2-pyridylmethyl)ethane-1,2-diamine (iso-BPMEN in 3), N1,N1-dimethyl-N2,N2-bis(6-methyl-2-pyridylmethyl)ethane-1,2-diamine (6-Me2-iso-BPMEN in 4), and tris(2-benzimidazolylmethyl)amine (TBimA in 7)) along with two linear tetradentate amine ligands (N1,N2-dimethyl-N1,N2-bis(2-pyridylmethyl)ethane-1,2-diamine (BPMEN in 5) and N1,N2-dimethyl-N1,N2-bis(6-methyl-2-pyridylmethyl)ethane-1,2-diamine (6-Me2-BPMEN in 6)) were employed in the study. Single-crystal X-ray structural studies reveal that each of the complex cations of 1-3 and 5 contains a mononuclear six-coordinate iron(II) center coordinated by a monoanionic benzilate, whereas complex 7 contains a mononuclear five-coordinate iron(II) center. Benzilate binds to the iron center in a monodentate fashion via one of the carboxylate oxygens in 1 and 7, but it coordinates in a bidentate chelating mode through carboxylate oxygen and neutral hydroxy oxygen in 2, 3, and 5. All of the iron(II) complexes react with dioxygen to exhibit quantitative decarboxylation of benzilic acid to benzophenone. In the decarboxylation pathway, dioxygen becomes reduced on the iron center and the resulting iron-oxygen oxidant shows versatile reactivity. The oxidants are nucleophilic in nature and oxidize sulfide to sulfoxide and sulfone. Furthermore, complexes 2 and 4-6 react with alkenes to produce cis-diols in moderate yields with the incorporation of both the oxygen atoms of dioxygen. The oxygen atoms of the nucleophilic oxidants do not exchange with water. On the basis of interception studies, nucleophilic iron(II) hydroperoxides are proposed to generate in situ in the reaction pathways. The difference in reactivity of the complexes toward external substrates could be attributed to the geometry of the O2-derived iron-oxygen oxidant. DFT calculations suggest that, among all possible geometries and spin states, high-spin side-on iron(II) hydroperoxides are energetically favorable for the complexes of 6-Me3-TPA, 6-Me2-iso-BPMEN, BPMEN, and 6-Me2-BPMEN ligands, while high spin end-on iron(II) hydroperoxides are favorable for the complexes of TPA, iso-BPMEN, and TBimA ligands." @default.
- W2564203602 created "2017-01-06" @default.
- W2564203602 creator A5012380620 @default.
- W2564203602 creator A5037909745 @default.
- W2564203602 creator A5065654287 @default.
- W2564203602 creator A5079068886 @default.
- W2564203602 creator A5079628284 @default.
- W2564203602 date "2016-12-15" @default.
- W2564203602 modified "2023-10-16" @default.
- W2564203602 title "Reductive Activation of O<sub>2</sub> by Non-Heme Iron(II) Benzilate Complexes of N<sub>4</sub> Ligands: Effect of Ligand Topology on the Reactivity of O<sub>2</sub>-Derived Oxidant" @default.
- W2564203602 cites W1124620890 @default.
- W2564203602 cites W1963974108 @default.
- W2564203602 cites W1966608829 @default.
- W2564203602 cites W1967700647 @default.
- W2564203602 cites W1981255213 @default.
- W2564203602 cites W1981763423 @default.
- W2564203602 cites W1984502447 @default.
- W2564203602 cites W1988949059 @default.
- W2564203602 cites W1989269725 @default.
- W2564203602 cites W1989747640 @default.
- W2564203602 cites W1990816037 @default.
- W2564203602 cites W1993928950 @default.
- W2564203602 cites W2001299931 @default.
- W2564203602 cites W2001557961 @default.
- W2564203602 cites W2009046603 @default.
- W2564203602 cites W2009853668 @default.
- W2564203602 cites W2010504916 @default.
- W2564203602 cites W2011130217 @default.
- W2564203602 cites W2012211558 @default.
- W2564203602 cites W2019406135 @default.
- W2564203602 cites W2023187663 @default.
- W2564203602 cites W2023271753 @default.
- W2564203602 cites W2023462017 @default.
- W2564203602 cites W2026397309 @default.
- W2564203602 cites W2032424617 @default.
- W2564203602 cites W2032741163 @default.
- W2564203602 cites W2038700747 @default.
- W2564203602 cites W2041936177 @default.
- W2564203602 cites W2044072818 @default.
- W2564203602 cites W2056866121 @default.
- W2564203602 cites W2058363175 @default.
- W2564203602 cites W2068222150 @default.
- W2564203602 cites W2068466778 @default.
- W2564203602 cites W2072648963 @default.
- W2564203602 cites W2076655264 @default.
- W2564203602 cites W2076962986 @default.
- W2564203602 cites W2078567919 @default.
- W2564203602 cites W2081149134 @default.
- W2564203602 cites W2084589958 @default.
- W2564203602 cites W2084787090 @default.
- W2564203602 cites W2091622079 @default.
- W2564203602 cites W2096165712 @default.
- W2564203602 cites W2096606673 @default.
- W2564203602 cites W2100017760 @default.
- W2564203602 cites W2105067416 @default.
- W2564203602 cites W2105249240 @default.
- W2564203602 cites W2106487454 @default.
- W2564203602 cites W2106597030 @default.
- W2564203602 cites W2118222011 @default.
- W2564203602 cites W2128586767 @default.
- W2564203602 cites W2128683024 @default.
- W2564203602 cites W2131027449 @default.
- W2564203602 cites W2135045037 @default.
- W2564203602 cites W2135492576 @default.
- W2564203602 cites W2143981217 @default.
- W2564203602 cites W2144089716 @default.
- W2564203602 cites W2159677696 @default.
- W2564203602 cites W2160951862 @default.
- W2564203602 cites W2166476332 @default.
- W2564203602 cites W2257281882 @default.
- W2564203602 cites W2316116473 @default.
- W2564203602 cites W2317169359 @default.
- W2564203602 cites W2323207391 @default.
- W2564203602 cites W2330965523 @default.
- W2564203602 cites W2331576851 @default.
- W2564203602 cites W2501113729 @default.
- W2564203602 cites W2510282394 @default.
- W2564203602 cites W2950657871 @default.
- W2564203602 doi "https://doi.org/10.1021/acs.inorgchem.6b02282" @default.
- W2564203602 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/27977171" @default.
- W2564203602 hasPublicationYear "2016" @default.
- W2564203602 type Work @default.
- W2564203602 sameAs 2564203602 @default.
- W2564203602 citedByCount "22" @default.
- W2564203602 countsByYear W25642036022017 @default.
- W2564203602 countsByYear W25642036022018 @default.
- W2564203602 countsByYear W25642036022019 @default.
- W2564203602 countsByYear W25642036022020 @default.
- W2564203602 countsByYear W25642036022021 @default.
- W2564203602 countsByYear W25642036022022 @default.
- W2564203602 countsByYear W25642036022023 @default.
- W2564203602 crossrefType "journal-article" @default.
- W2564203602 hasAuthorship W2564203602A5012380620 @default.
- W2564203602 hasAuthorship W2564203602A5037909745 @default.
- W2564203602 hasAuthorship W2564203602A5065654287 @default.
- W2564203602 hasAuthorship W2564203602A5079068886 @default.
- W2564203602 hasAuthorship W2564203602A5079628284 @default.
- W2564203602 hasConcept C115624301 @default.