Matches in SemOpenAlex for { <https://semopenalex.org/work/W2564463886> ?p ?o ?g. }
Showing items 1 to 93 of
93
with 100 items per page.
- W2564463886 endingPage "78" @default.
- W2564463886 startingPage "67" @default.
- W2564463886 abstract "Wireless sensor networks (WSNs) are currently adopted in a vast variety of domains where sensor energy consumption is a critical challenge because of the existing power constraints. Sleep scheduling approaches have recently attracted the interest of the scientific community, as they give the opportunity of turning off the redundant nodes of a network to save energy and prolong the lifetime of the network without suspending the monitoring activities performed by the WSN.Our study focuses on the problem of partial coverage, targeting scenarios in which the continuous monitoring of a limited portion of the area of interest is enough. In this paper we present PCLA, a novel algorithm that relies on Learning Automata to implement sleep scheduling approaches. It aims at minimizing the number of sensors to activate for covering a desired portion of the region of interest preserving the connectivity among sensors. Simulation results show how PCLA can select sensors in an efficient way to satisfy the imposed constraints, thus guaranteeing good performance in terms of time complexity, working-node ratio, scalability, and WSN lifetime. Moreover, compared to the state of the art, PCLA is able to guarantee better performance." @default.
- W2564463886 created "2017-01-06" @default.
- W2564463886 creator A5000897225 @default.
- W2564463886 creator A5030451194 @default.
- W2564463886 creator A5035910159 @default.
- W2564463886 creator A5056577356 @default.
- W2564463886 date "2017-02-01" @default.
- W2564463886 modified "2023-10-16" @default.
- W2564463886 title "A sleep scheduling approach based on learning automata for WSN partialcoverage" @default.
- W2564463886 cites W1536442063 @default.
- W2564463886 cites W1837982953 @default.
- W2564463886 cites W1974521775 @default.
- W2564463886 cites W1986129901 @default.
- W2564463886 cites W1989231680 @default.
- W2564463886 cites W1999385177 @default.
- W2564463886 cites W2002989270 @default.
- W2564463886 cites W2011532811 @default.
- W2564463886 cites W2019269619 @default.
- W2564463886 cites W2020578866 @default.
- W2564463886 cites W2044195080 @default.
- W2564463886 cites W2052918247 @default.
- W2564463886 cites W2061751206 @default.
- W2564463886 cites W2064808093 @default.
- W2564463886 cites W2078504833 @default.
- W2564463886 cites W2084072921 @default.
- W2564463886 cites W2105103777 @default.
- W2564463886 cites W2110356151 @default.
- W2564463886 cites W2145986078 @default.
- W2564463886 cites W2156810018 @default.
- W2564463886 cites W2162935755 @default.
- W2564463886 cites W2164472621 @default.
- W2564463886 cites W2171275063 @default.
- W2564463886 cites W2171408391 @default.
- W2564463886 cites W2513112364 @default.
- W2564463886 doi "https://doi.org/10.1016/j.jnca.2016.12.022" @default.
- W2564463886 hasPublicationYear "2017" @default.
- W2564463886 type Work @default.
- W2564463886 sameAs 2564463886 @default.
- W2564463886 citedByCount "89" @default.
- W2564463886 countsByYear W25644638862017 @default.
- W2564463886 countsByYear W25644638862018 @default.
- W2564463886 countsByYear W25644638862019 @default.
- W2564463886 countsByYear W25644638862020 @default.
- W2564463886 countsByYear W25644638862021 @default.
- W2564463886 countsByYear W25644638862022 @default.
- W2564463886 countsByYear W25644638862023 @default.
- W2564463886 crossrefType "journal-article" @default.
- W2564463886 hasAuthorship W2564463886A5000897225 @default.
- W2564463886 hasAuthorship W2564463886A5030451194 @default.
- W2564463886 hasAuthorship W2564463886A5035910159 @default.
- W2564463886 hasAuthorship W2564463886A5056577356 @default.
- W2564463886 hasConcept C112505250 @default.
- W2564463886 hasConcept C120314980 @default.
- W2564463886 hasConcept C126255220 @default.
- W2564463886 hasConcept C154945302 @default.
- W2564463886 hasConcept C199360897 @default.
- W2564463886 hasConcept C206729178 @default.
- W2564463886 hasConcept C2775841894 @default.
- W2564463886 hasConcept C2776807809 @default.
- W2564463886 hasConcept C33923547 @default.
- W2564463886 hasConcept C41008148 @default.
- W2564463886 hasConcept C79403827 @default.
- W2564463886 hasConceptScore W2564463886C112505250 @default.
- W2564463886 hasConceptScore W2564463886C120314980 @default.
- W2564463886 hasConceptScore W2564463886C126255220 @default.
- W2564463886 hasConceptScore W2564463886C154945302 @default.
- W2564463886 hasConceptScore W2564463886C199360897 @default.
- W2564463886 hasConceptScore W2564463886C206729178 @default.
- W2564463886 hasConceptScore W2564463886C2775841894 @default.
- W2564463886 hasConceptScore W2564463886C2776807809 @default.
- W2564463886 hasConceptScore W2564463886C33923547 @default.
- W2564463886 hasConceptScore W2564463886C41008148 @default.
- W2564463886 hasConceptScore W2564463886C79403827 @default.
- W2564463886 hasLocation W25644638861 @default.
- W2564463886 hasOpenAccess W2564463886 @default.
- W2564463886 hasPrimaryLocation W25644638861 @default.
- W2564463886 hasRelatedWork W1572108542 @default.
- W2564463886 hasRelatedWork W1882733036 @default.
- W2564463886 hasRelatedWork W2030922678 @default.
- W2564463886 hasRelatedWork W2039968861 @default.
- W2564463886 hasRelatedWork W2109998134 @default.
- W2564463886 hasRelatedWork W2125095596 @default.
- W2564463886 hasRelatedWork W2140625810 @default.
- W2564463886 hasRelatedWork W2160425906 @default.
- W2564463886 hasRelatedWork W2389719923 @default.
- W2564463886 hasRelatedWork W2546696010 @default.
- W2564463886 hasVolume "80" @default.
- W2564463886 isParatext "false" @default.
- W2564463886 isRetracted "false" @default.
- W2564463886 magId "2564463886" @default.
- W2564463886 workType "article" @default.