Matches in SemOpenAlex for { <https://semopenalex.org/work/W2564656965> ?p ?o ?g. }
- W2564656965 abstract "This thesis introduces locomotion synthesis methods for humanoid characters. Motion synthesis is an under-constrained problem that requires additional constraints beyond user inputs. Two main approaches to introducing additional constraints are physics-based and data-driven. Despite significant progress in the past 20 years, major difficulties still exist for both approaches. In general, building animation systems that are flexible to user requirements while keeping the synthesized motions plausible remain a challenging task. The methods introduced in this thesis, presented in two-parts, aim to allow animation systems to be more flexible to user demands without radically violating constraints that are important for maintaining plausibility. In the first part of the thesis, we address an important subproblem in physics-based animation — controller synthesis for humanoid characters. We describe a method for optimizing the parameters of a physics-based controller for full-body, 3D walking. The objective function includes terms for power minimization, angular momentum minimization, and minimal head motion, among others. Together these terms produce a number of important features of natural walking, including active toe-off, near-passive knee swing, and leg extension during swing. We then extend the algorithm to optimize for robustness to uncertainty. Many unknown factors, such as external forces, control torques, and user control inputs, cannot be known in advance and must be treated as uncertain. Controller optimization entails optimizing the expected value of the objective function, which is computed by Monte Carlo methods. We demonstrate examples with a variety of sources of uncertainty and task constraints. The second part of this thesis deals with the data-driven approach and the problem of motion modeling. Defining suitable models for human motion data is non-trivial. Simple linear models are not expressive enough, while more complex models require setting many parameters and are difficult to learn with limited data. Using Bayesian methods, we demonstrate how the Gaussian process prior can be used to derive a kernelized version of multilinear models. The result is a locomotion model that takes advantage of training data addressed by multiple indices to improve generalization to unseen motions." @default.
- W2564656965 created "2017-01-06" @default.
- W2564656965 creator A5025027262 @default.
- W2564656965 date "2010-01-01" @default.
- W2564656965 modified "2023-09-26" @default.
- W2564656965 title "Locomotion synthesis methods for humanoid characters" @default.
- W2564656965 cites W102487131 @default.
- W2564656965 cites W1495450524 @default.
- W2564656965 cites W1567512734 @default.
- W2564656965 cites W1581808154 @default.
- W2564656965 cites W1589503602 @default.
- W2564656965 cites W1599808607 @default.
- W2564656965 cites W1601974704 @default.
- W2564656965 cites W1604293137 @default.
- W2564656965 cites W1604938182 @default.
- W2564656965 cites W1643263348 @default.
- W2564656965 cites W1746819321 @default.
- W2564656965 cites W1865572126 @default.
- W2564656965 cites W1956636948 @default.
- W2564656965 cites W1966784014 @default.
- W2564656965 cites W1966966683 @default.
- W2564656965 cites W1968106150 @default.
- W2564656965 cites W1970552420 @default.
- W2564656965 cites W1977259876 @default.
- W2564656965 cites W1977871568 @default.
- W2564656965 cites W1982880998 @default.
- W2564656965 cites W1987431312 @default.
- W2564656965 cites W1987574258 @default.
- W2564656965 cites W1987706689 @default.
- W2564656965 cites W1991942383 @default.
- W2564656965 cites W1996525632 @default.
- W2564656965 cites W2001165022 @default.
- W2564656965 cites W2005126631 @default.
- W2564656965 cites W2007272966 @default.
- W2564656965 cites W2013912476 @default.
- W2564656965 cites W2017026595 @default.
- W2564656965 cites W2019953692 @default.
- W2564656965 cites W2024060531 @default.
- W2564656965 cites W2027247754 @default.
- W2564656965 cites W2029058516 @default.
- W2564656965 cites W2029776687 @default.
- W2564656965 cites W2033299989 @default.
- W2564656965 cites W2037277559 @default.
- W2564656965 cites W2043878167 @default.
- W2564656965 cites W2046883629 @default.
- W2564656965 cites W2047842611 @default.
- W2564656965 cites W2051567001 @default.
- W2564656965 cites W2053886812 @default.
- W2564656965 cites W2059486229 @default.
- W2564656965 cites W2063149203 @default.
- W2564656965 cites W2064076655 @default.
- W2564656965 cites W2067595006 @default.
- W2564656965 cites W2075347672 @default.
- W2564656965 cites W2076439395 @default.
- W2564656965 cites W2078397531 @default.
- W2564656965 cites W2081864293 @default.
- W2564656965 cites W2083334152 @default.
- W2564656965 cites W2086637623 @default.
- W2564656965 cites W2089476757 @default.
- W2564656965 cites W2089528820 @default.
- W2564656965 cites W2095442747 @default.
- W2564656965 cites W2097412577 @default.
- W2564656965 cites W2097944344 @default.
- W2564656965 cites W2099824239 @default.
- W2564656965 cites W2102630415 @default.
- W2564656965 cites W2103428420 @default.
- W2564656965 cites W2105006454 @default.
- W2564656965 cites W2105637477 @default.
- W2564656965 cites W2106539961 @default.
- W2564656965 cites W2107628931 @default.
- W2564656965 cites W2109008048 @default.
- W2564656965 cites W2110139691 @default.
- W2564656965 cites W2110935301 @default.
- W2564656965 cites W2111237478 @default.
- W2564656965 cites W2113055885 @default.
- W2564656965 cites W2114709961 @default.
- W2564656965 cites W2115096495 @default.
- W2564656965 cites W2115136127 @default.
- W2564656965 cites W2115887468 @default.
- W2564656965 cites W2117085697 @default.
- W2564656965 cites W2120003827 @default.
- W2564656965 cites W2120894402 @default.
- W2564656965 cites W2121385883 @default.
- W2564656965 cites W2121863487 @default.
- W2564656965 cites W2123236823 @default.
- W2564656965 cites W2124438859 @default.
- W2564656965 cites W2124609748 @default.
- W2564656965 cites W2125298102 @default.
- W2564656965 cites W2125612430 @default.
- W2564656965 cites W2126022292 @default.
- W2564656965 cites W2128003332 @default.
- W2564656965 cites W2131215403 @default.
- W2564656965 cites W2132714442 @default.
- W2564656965 cites W2133898935 @default.
- W2564656965 cites W2134504275 @default.
- W2564656965 cites W2135174216 @default.
- W2564656965 cites W2135666716 @default.
- W2564656965 cites W2135969326 @default.
- W2564656965 cites W2136111243 @default.
- W2564656965 cites W2140640599 @default.