Matches in SemOpenAlex for { <https://semopenalex.org/work/W2564765202> ?p ?o ?g. }
- W2564765202 endingPage "1650" @default.
- W2564765202 startingPage "1640" @default.
- W2564765202 abstract "Generating synthetically mixed data from library spectra provides a direct means to train empirical regression models for subpixel mapping. In order to best represent the subpixel composition of image data, the generation of synthetic mixtures must incorporate a multitude of mixing possibilities. This can lead to an excessive amount of training samples. We show that increasing mixing complexity in the training set improves model performance when quantifying urban land cover with support vector regression (SVR). To cope with the challenging increase in the number of training samples, we propose the use of ensemble learning based on bootstrap aggregation from synthetically mixed training data. The workflow is tested on simulated spaceborne imaging spectrometer data acquired over Berlin, Germany. Comparisons to SVR without bagging and multiple endmember spectral mixture analysis reveal the usefulness of the methodology for quantitative urban mapping." @default.
- W2564765202 created "2017-01-06" @default.
- W2564765202 creator A5015469539 @default.
- W2564765202 creator A5041171844 @default.
- W2564765202 creator A5069745059 @default.
- W2564765202 creator A5070600924 @default.
- W2564765202 date "2017-04-01" @default.
- W2564765202 modified "2023-10-14" @default.
- W2564765202 title "Ensemble Learning From Synthetically Mixed Training Data for Quantifying Urban Land Cover With Support Vector Regression" @default.
- W2564765202 cites W1006483632 @default.
- W2564765202 cites W1754365911 @default.
- W2564765202 cites W1772504446 @default.
- W2564765202 cites W1783023460 @default.
- W2564765202 cites W1964357740 @default.
- W2564765202 cites W1971306837 @default.
- W2564765202 cites W1972293418 @default.
- W2564765202 cites W1990255627 @default.
- W2564765202 cites W1991274690 @default.
- W2564765202 cites W2017933291 @default.
- W2564765202 cites W2025389829 @default.
- W2564765202 cites W2027233401 @default.
- W2564765202 cites W2039768055 @default.
- W2564765202 cites W2040617212 @default.
- W2564765202 cites W2043300851 @default.
- W2564765202 cites W2043665634 @default.
- W2564765202 cites W2049827513 @default.
- W2564765202 cites W2053688812 @default.
- W2564765202 cites W2055459538 @default.
- W2564765202 cites W2058891717 @default.
- W2564765202 cites W2075218710 @default.
- W2564765202 cites W2076306039 @default.
- W2564765202 cites W2082880010 @default.
- W2564765202 cites W2083933193 @default.
- W2564765202 cites W2103699041 @default.
- W2564765202 cites W2104269704 @default.
- W2564765202 cites W2104391405 @default.
- W2564765202 cites W2109643477 @default.
- W2564765202 cites W2113242816 @default.
- W2564765202 cites W2115408897 @default.
- W2564765202 cites W2117519593 @default.
- W2564765202 cites W2123907688 @default.
- W2564765202 cites W2123939504 @default.
- W2564765202 cites W2124652809 @default.
- W2564765202 cites W2124706543 @default.
- W2564765202 cites W2132637576 @default.
- W2564765202 cites W2133578969 @default.
- W2564765202 cites W2136251662 @default.
- W2564765202 cites W2139211176 @default.
- W2564765202 cites W2144881411 @default.
- W2564765202 cites W2151773573 @default.
- W2564765202 cites W2153635508 @default.
- W2564765202 cites W2156419436 @default.
- W2564765202 cites W2156909104 @default.
- W2564765202 cites W2162421262 @default.
- W2564765202 cites W2167917621 @default.
- W2564765202 cites W2169500530 @default.
- W2564765202 cites W2344705075 @default.
- W2564765202 cites W2485915674 @default.
- W2564765202 cites W4212883601 @default.
- W2564765202 cites W59495185 @default.
- W2564765202 doi "https://doi.org/10.1109/jstars.2016.2634859" @default.
- W2564765202 hasPublicationYear "2017" @default.
- W2564765202 type Work @default.
- W2564765202 sameAs 2564765202 @default.
- W2564765202 citedByCount "44" @default.
- W2564765202 countsByYear W25647652022017 @default.
- W2564765202 countsByYear W25647652022018 @default.
- W2564765202 countsByYear W25647652022019 @default.
- W2564765202 countsByYear W25647652022020 @default.
- W2564765202 countsByYear W25647652022021 @default.
- W2564765202 countsByYear W25647652022022 @default.
- W2564765202 countsByYear W25647652022023 @default.
- W2564765202 crossrefType "journal-article" @default.
- W2564765202 hasAuthorship W2564765202A5015469539 @default.
- W2564765202 hasAuthorship W2564765202A5041171844 @default.
- W2564765202 hasAuthorship W2564765202A5069745059 @default.
- W2564765202 hasAuthorship W2564765202A5070600924 @default.
- W2564765202 hasConcept C105795698 @default.
- W2564765202 hasConcept C119857082 @default.
- W2564765202 hasConcept C121332964 @default.
- W2564765202 hasConcept C12267149 @default.
- W2564765202 hasConcept C124101348 @default.
- W2564765202 hasConcept C127413603 @default.
- W2564765202 hasConcept C147176958 @default.
- W2564765202 hasConcept C152877465 @default.
- W2564765202 hasConcept C153180895 @default.
- W2564765202 hasConcept C154945302 @default.
- W2564765202 hasConcept C160633673 @default.
- W2564765202 hasConcept C169258074 @default.
- W2564765202 hasConcept C177212765 @default.
- W2564765202 hasConcept C183852935 @default.
- W2564765202 hasConcept C2780648208 @default.
- W2564765202 hasConcept C33390570 @default.
- W2564765202 hasConcept C33923547 @default.
- W2564765202 hasConcept C41008148 @default.
- W2564765202 hasConcept C45942800 @default.
- W2564765202 hasConcept C4792198 @default.
- W2564765202 hasConcept C51632099 @default.