Matches in SemOpenAlex for { <https://semopenalex.org/work/W2564775381> ?p ?o ?g. }
- W2564775381 endingPage "317" @default.
- W2564775381 startingPage "289" @default.
- W2564775381 abstract "We discuss the problem of extending data mining approaches to cases in which data points arise in the form of individual graphs. Being able to find the intrinsic low-dimensionality in ensembles of graphs can be useful in a variety of modeling contexts, especially when coarse-graining the detailed graph information is of interest. One of the main challenges in mining graph data is the definition of a suitable pairwise similarity metric in the space of graphs. We explore two practical solutions to solving this problem: one based on finding subgraph densities, and one using spectral information. The approach is illustrated on three test data sets (ensembles of graphs); two of these are obtained from standard literature graph generating algorithms, while the graphs in the third example are sampled as dynamic snapshots from an evolving network simulation. We further combine these approaches with equation free techniques, demonstrating how such data mining can enhance scientific computation of network evolution dynamics." @default.
- W2564775381 created "2017-01-06" @default.
- W2564775381 creator A5003806118 @default.
- W2564775381 creator A5020894497 @default.
- W2564775381 creator A5036566464 @default.
- W2564775381 creator A5051610486 @default.
- W2564775381 creator A5059293931 @default.
- W2564775381 date "2017-01-01" @default.
- W2564775381 modified "2023-09-26" @default.
- W2564775381 title "Data Mining When Each Data Point is a Network" @default.
- W2564775381 cites W1816257748 @default.
- W2564775381 cites W1909495565 @default.
- W2564775381 cites W1965499304 @default.
- W2564775381 cites W1974750104 @default.
- W2564775381 cites W2001141328 @default.
- W2564775381 cites W2012459404 @default.
- W2564775381 cites W2027264060 @default.
- W2564775381 cites W2049817674 @default.
- W2564775381 cites W2069870748 @default.
- W2564775381 cites W2070460788 @default.
- W2564775381 cites W2076770688 @default.
- W2564775381 cites W2082734581 @default.
- W2564775381 cites W2084581385 @default.
- W2564775381 cites W2096725584 @default.
- W2564775381 cites W2098940789 @default.
- W2564775381 cites W2104690989 @default.
- W2564775381 cites W2112262143 @default.
- W2564775381 cites W2112976607 @default.
- W2564775381 cites W2115412287 @default.
- W2564775381 cites W2116810533 @default.
- W2564775381 cites W2117684310 @default.
- W2564775381 cites W2147324680 @default.
- W2564775381 cites W2147975091 @default.
- W2564775381 cites W2148606196 @default.
- W2564775381 cites W2156537900 @default.
- W2564775381 cites W2167683479 @default.
- W2564775381 cites W2474714806 @default.
- W2564775381 cites W2734353507 @default.
- W2564775381 cites W2963321670 @default.
- W2564775381 cites W3122767893 @default.
- W2564775381 cites W4312512934 @default.
- W2564775381 doi "https://doi.org/10.1007/978-3-319-64173-7_17" @default.
- W2564775381 hasPublicationYear "2017" @default.
- W2564775381 type Work @default.
- W2564775381 sameAs 2564775381 @default.
- W2564775381 citedByCount "6" @default.
- W2564775381 countsByYear W25647753812019 @default.
- W2564775381 countsByYear W25647753812020 @default.
- W2564775381 countsByYear W25647753812021 @default.
- W2564775381 countsByYear W25647753812022 @default.
- W2564775381 crossrefType "book-chapter" @default.
- W2564775381 hasAuthorship W2564775381A5003806118 @default.
- W2564775381 hasAuthorship W2564775381A5020894497 @default.
- W2564775381 hasAuthorship W2564775381A5036566464 @default.
- W2564775381 hasAuthorship W2564775381A5051610486 @default.
- W2564775381 hasAuthorship W2564775381A5059293931 @default.
- W2564775381 hasBestOaLocation W25647753812 @default.
- W2564775381 hasConcept C111030470 @default.
- W2564775381 hasConcept C111919701 @default.
- W2564775381 hasConcept C11413529 @default.
- W2564775381 hasConcept C119857082 @default.
- W2564775381 hasConcept C124101348 @default.
- W2564775381 hasConcept C132525143 @default.
- W2564775381 hasConcept C154945302 @default.
- W2564775381 hasConcept C177774035 @default.
- W2564775381 hasConcept C184898388 @default.
- W2564775381 hasConcept C41008148 @default.
- W2564775381 hasConcept C45374587 @default.
- W2564775381 hasConcept C80444323 @default.
- W2564775381 hasConceptScore W2564775381C111030470 @default.
- W2564775381 hasConceptScore W2564775381C111919701 @default.
- W2564775381 hasConceptScore W2564775381C11413529 @default.
- W2564775381 hasConceptScore W2564775381C119857082 @default.
- W2564775381 hasConceptScore W2564775381C124101348 @default.
- W2564775381 hasConceptScore W2564775381C132525143 @default.
- W2564775381 hasConceptScore W2564775381C154945302 @default.
- W2564775381 hasConceptScore W2564775381C177774035 @default.
- W2564775381 hasConceptScore W2564775381C184898388 @default.
- W2564775381 hasConceptScore W2564775381C41008148 @default.
- W2564775381 hasConceptScore W2564775381C45374587 @default.
- W2564775381 hasConceptScore W2564775381C80444323 @default.
- W2564775381 hasLocation W25647753811 @default.
- W2564775381 hasLocation W25647753812 @default.
- W2564775381 hasOpenAccess W2564775381 @default.
- W2564775381 hasPrimaryLocation W25647753811 @default.
- W2564775381 hasRelatedWork W1568173680 @default.
- W2564775381 hasRelatedWork W2090914728 @default.
- W2564775381 hasRelatedWork W2102275089 @default.
- W2564775381 hasRelatedWork W2945365184 @default.
- W2564775381 hasRelatedWork W2971267355 @default.
- W2564775381 hasRelatedWork W4236163602 @default.
- W2564775381 hasRelatedWork W4288099645 @default.
- W2564775381 hasRelatedWork W4312266567 @default.
- W2564775381 hasRelatedWork W4312816440 @default.
- W2564775381 hasRelatedWork W4383860413 @default.
- W2564775381 isParatext "false" @default.
- W2564775381 isRetracted "false" @default.
- W2564775381 magId "2564775381" @default.