Matches in SemOpenAlex for { <https://semopenalex.org/work/W2564791711> ?p ?o ?g. }
- W2564791711 endingPage "86" @default.
- W2564791711 startingPage "74" @default.
- W2564791711 abstract "Common biological measurements are in the form of noisy convolutions of signals of interest with possibly unknown and transient blurring kernels. Examples include EEG and calcium imaging data. Thus, signal deconvolution of these measurements is crucial in understanding the underlying biological processes. The objective of this paper is to develop fast and stable solutions for signal deconvolution from noisy, blurred, and undersampled data, where the signals are in the form of discrete events distributed in time and space.We introduce compressible state-space models as a framework to model and estimate such discrete events. These state-space models admit abrupt changes in the states and have a convergent transition matrix, and are coupled with compressive linear measurements. We consider a dynamic compressive sensing optimization problem and develop a fast solution, using two nested expectation maximization algorithms, to jointly estimate the states as well as their transition matrices. Under suitable sparsity assumptions on the dynamics, we prove optimal stability guarantees for the recovery of the states and present a method for the identification of the underlying discrete events with precise confidence bounds.We present simulation studies as well as application to calcium deconvolution and sleep spindle detection, which verify our theoretical results and show significant improvement over existing techniques.Our results show that by explicitly modeling the dynamics of the underlying signals, it is possible to construct signal deconvolution solutions that are scalable, statistically robust, and achieve high temporal resolution.Our proposed methodology provides a framework for modeling and deconvolution of noisy, blurred, and undersampled measurements in a fast and stable fashion, with potential application to a wide range of biological data." @default.
- W2564791711 created "2017-01-06" @default.
- W2564791711 creator A5035148429 @default.
- W2564791711 creator A5041600605 @default.
- W2564791711 creator A5041749584 @default.
- W2564791711 creator A5042783680 @default.
- W2564791711 creator A5048798639 @default.
- W2564791711 creator A5049225160 @default.
- W2564791711 creator A5055764056 @default.
- W2564791711 date "2018-01-01" @default.
- W2564791711 modified "2023-10-05" @default.
- W2564791711 title "Fast and Stable Signal Deconvolution via Compressible State-Space Models" @default.
- W2564791711 cites W1589317082 @default.
- W2564791711 cites W1770500012 @default.
- W2564791711 cites W1963718895 @default.
- W2564791711 cites W1965384704 @default.
- W2564791711 cites W1983313287 @default.
- W2564791711 cites W1985037657 @default.
- W2564791711 cites W1985517056 @default.
- W2564791711 cites W1991934169 @default.
- W2564791711 cites W1994617181 @default.
- W2564791711 cites W1998367754 @default.
- W2564791711 cites W1999853356 @default.
- W2564791711 cites W2006277118 @default.
- W2564791711 cites W2013065248 @default.
- W2564791711 cites W2017718716 @default.
- W2564791711 cites W2021589706 @default.
- W2564791711 cites W2022295780 @default.
- W2564791711 cites W2025262040 @default.
- W2564791711 cites W2037035617 @default.
- W2564791711 cites W2040756743 @default.
- W2564791711 cites W2046031057 @default.
- W2564791711 cites W2054010646 @default.
- W2564791711 cites W2058481677 @default.
- W2564791711 cites W2067474937 @default.
- W2564791711 cites W2085685023 @default.
- W2564791711 cites W2086027516 @default.
- W2564791711 cites W2094227853 @default.
- W2564791711 cites W2103450980 @default.
- W2564791711 cites W2103576720 @default.
- W2564791711 cites W2104697154 @default.
- W2564791711 cites W2106935171 @default.
- W2564791711 cites W2107034604 @default.
- W2564791711 cites W2108094133 @default.
- W2564791711 cites W2119667497 @default.
- W2564791711 cites W2121830132 @default.
- W2564791711 cites W2125536150 @default.
- W2564791711 cites W2136906773 @default.
- W2564791711 cites W2138500679 @default.
- W2564791711 cites W2140514146 @default.
- W2564791711 cites W2146000945 @default.
- W2564791711 cites W2152652881 @default.
- W2564791711 cites W2162409952 @default.
- W2564791711 cites W2163500734 @default.
- W2564791711 cites W2231009150 @default.
- W2564791711 cites W2534087623 @default.
- W2564791711 cites W2950190315 @default.
- W2564791711 cites W2964325628 @default.
- W2564791711 cites W3098724218 @default.
- W2564791711 cites W3099550161 @default.
- W2564791711 cites W3100456593 @default.
- W2564791711 cites W4238744307 @default.
- W2564791711 cites W4240108704 @default.
- W2564791711 cites W4240159220 @default.
- W2564791711 doi "https://doi.org/10.1109/tbme.2017.2694339" @default.
- W2564791711 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/5683949" @default.
- W2564791711 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/28422648" @default.
- W2564791711 hasPublicationYear "2018" @default.
- W2564791711 type Work @default.
- W2564791711 sameAs 2564791711 @default.
- W2564791711 citedByCount "14" @default.
- W2564791711 countsByYear W25647917112016 @default.
- W2564791711 countsByYear W25647917112018 @default.
- W2564791711 countsByYear W25647917112019 @default.
- W2564791711 countsByYear W25647917112020 @default.
- W2564791711 countsByYear W25647917112021 @default.
- W2564791711 countsByYear W25647917112022 @default.
- W2564791711 countsByYear W25647917112023 @default.
- W2564791711 crossrefType "journal-article" @default.
- W2564791711 hasAuthorship W2564791711A5035148429 @default.
- W2564791711 hasAuthorship W2564791711A5041600605 @default.
- W2564791711 hasAuthorship W2564791711A5041749584 @default.
- W2564791711 hasAuthorship W2564791711A5042783680 @default.
- W2564791711 hasAuthorship W2564791711A5048798639 @default.
- W2564791711 hasAuthorship W2564791711A5049225160 @default.
- W2564791711 hasAuthorship W2564791711A5055764056 @default.
- W2564791711 hasBestOaLocation W25647917111 @default.
- W2564791711 hasConcept C104267543 @default.
- W2564791711 hasConcept C105795698 @default.
- W2564791711 hasConcept C112972136 @default.
- W2564791711 hasConcept C11413529 @default.
- W2564791711 hasConcept C119857082 @default.
- W2564791711 hasConcept C124851039 @default.
- W2564791711 hasConcept C126255220 @default.
- W2564791711 hasConcept C174576160 @default.
- W2564791711 hasConcept C30044814 @default.
- W2564791711 hasConcept C33923547 @default.
- W2564791711 hasConcept C41008148 @default.