Matches in SemOpenAlex for { <https://semopenalex.org/work/W2564805107> ?p ?o ?g. }
- W2564805107 endingPage "3112" @default.
- W2564805107 startingPage "3098" @default.
- W2564805107 abstract "Nonlocal image representation methods, including group-based sparse coding and block-matching 3-D filtering, have shown their great performance in application to low-level tasks. The nonlocal prior is extracted from each group consisting of patches with similar intensities. Grouping patches based on intensity similarity, however, gives rise to disturbance and inaccuracy in estimation of the true images. To address this problem, we propose a structure-based low-rank model with graph nuclear norm regularization. We exploit the local manifold structure inside a patch and group the patches by the distance metric of manifold structure. With the manifold structure information, a graph nuclear norm regularization is established and incorporated into a low-rank approximation model. We then prove that the graph-based regularization is equivalent to a weighted nuclear norm and the proposed model can be solved by a weighted singular-value thresholding algorithm. Extensive experiments on additive white Gaussian noise removal and mixed noise removal demonstrate that the proposed method achieves a better performance than several state-of-the-art algorithms." @default.
- W2564805107 created "2017-01-06" @default.
- W2564805107 creator A5020302879 @default.
- W2564805107 creator A5029691902 @default.
- W2564805107 creator A5039792198 @default.
- W2564805107 creator A5047510579 @default.
- W2564805107 creator A5047886846 @default.
- W2564805107 creator A5071278984 @default.
- W2564805107 creator A5072348001 @default.
- W2564805107 creator A5080641513 @default.
- W2564805107 date "2017-07-01" @default.
- W2564805107 modified "2023-10-16" @default.
- W2564805107 title "Structure-Based Low-Rank Model With Graph Nuclear Norm Regularization for Noise Removal" @default.
- W2564805107 cites W1964394948 @default.
- W2564805107 cites W1972499291 @default.
- W2564805107 cites W1978749115 @default.
- W2564805107 cites W2009265594 @default.
- W2564805107 cites W2011592399 @default.
- W2564805107 cites W2014311222 @default.
- W2564805107 cites W2038596520 @default.
- W2564805107 cites W2038649727 @default.
- W2564805107 cites W2045737896 @default.
- W2564805107 cites W2048695508 @default.
- W2564805107 cites W2056370875 @default.
- W2564805107 cites W2066630786 @default.
- W2564805107 cites W2079180184 @default.
- W2564805107 cites W2085692415 @default.
- W2564805107 cites W2086962710 @default.
- W2564805107 cites W2089712903 @default.
- W2564805107 cites W2091494211 @default.
- W2564805107 cites W2094757833 @default.
- W2564805107 cites W2097073572 @default.
- W2564805107 cites W2098900561 @default.
- W2564805107 cites W2100705753 @default.
- W2564805107 cites W2103972604 @default.
- W2564805107 cites W2107474456 @default.
- W2564805107 cites W2107604145 @default.
- W2564805107 cites W2113824004 @default.
- W2564805107 cites W2121058967 @default.
- W2564805107 cites W2121752514 @default.
- W2564805107 cites W2125527601 @default.
- W2564805107 cites W2125637308 @default.
- W2564805107 cites W2126773133 @default.
- W2564805107 cites W2126922884 @default.
- W2564805107 cites W2136396015 @default.
- W2564805107 cites W2138019504 @default.
- W2564805107 cites W2140245639 @default.
- W2564805107 cites W2141983208 @default.
- W2564805107 cites W2142224912 @default.
- W2564805107 cites W2150427434 @default.
- W2564805107 cites W2151452149 @default.
- W2564805107 cites W2153663612 @default.
- W2564805107 cites W2154011501 @default.
- W2564805107 cites W2156600062 @default.
- W2564805107 cites W2160547390 @default.
- W2564805107 cites W2160817147 @default.
- W2564805107 cites W2165141499 @default.
- W2564805107 cites W2298605637 @default.
- W2564805107 cites W2334911726 @default.
- W2564805107 cites W2507470109 @default.
- W2564805107 cites W2536599074 @default.
- W2564805107 cites W2963355980 @default.
- W2564805107 cites W3104720471 @default.
- W2564805107 cites W4246684182 @default.
- W2564805107 cites W4252684946 @default.
- W2564805107 cites W4362223627 @default.
- W2564805107 doi "https://doi.org/10.1109/tip.2016.2639781" @default.
- W2564805107 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/28113320" @default.
- W2564805107 hasPublicationYear "2017" @default.
- W2564805107 type Work @default.
- W2564805107 sameAs 2564805107 @default.
- W2564805107 citedByCount "23" @default.
- W2564805107 countsByYear W25648051072017 @default.
- W2564805107 countsByYear W25648051072018 @default.
- W2564805107 countsByYear W25648051072019 @default.
- W2564805107 countsByYear W25648051072020 @default.
- W2564805107 countsByYear W25648051072021 @default.
- W2564805107 countsByYear W25648051072022 @default.
- W2564805107 countsByYear W25648051072023 @default.
- W2564805107 crossrefType "journal-article" @default.
- W2564805107 hasAuthorship W2564805107A5020302879 @default.
- W2564805107 hasAuthorship W2564805107A5029691902 @default.
- W2564805107 hasAuthorship W2564805107A5039792198 @default.
- W2564805107 hasAuthorship W2564805107A5047510579 @default.
- W2564805107 hasAuthorship W2564805107A5047886846 @default.
- W2564805107 hasAuthorship W2564805107A5071278984 @default.
- W2564805107 hasAuthorship W2564805107A5072348001 @default.
- W2564805107 hasAuthorship W2564805107A5080641513 @default.
- W2564805107 hasConcept C11413529 @default.
- W2564805107 hasConcept C121332964 @default.
- W2564805107 hasConcept C153180895 @default.
- W2564805107 hasConcept C154945302 @default.
- W2564805107 hasConcept C158693339 @default.
- W2564805107 hasConcept C163294075 @default.
- W2564805107 hasConcept C2776135515 @default.
- W2564805107 hasConcept C33923547 @default.
- W2564805107 hasConcept C41008148 @default.
- W2564805107 hasConcept C4199805 @default.