Matches in SemOpenAlex for { <https://semopenalex.org/work/W2564963669> ?p ?o ?g. }
- W2564963669 endingPage "122" @default.
- W2564963669 startingPage "109" @default.
- W2564963669 abstract "There are two key issues for the kernel-based regularization method: one is how to design a suitable kernel to embed in the kernel the prior knowledge of the LTI system to be identified, and the other one is how to tune the kernel such that the resulting regularized impulse response estimator can achieve a good bias–variance tradeoff. In this paper, we focus on the issue of kernel design. Depending on the type of the prior knowledge, we propose two methods to design kernels: one is from a machine learning perspective and the other one is from a system theory perspective. We also provide analysis results for both methods, which not only enhances our understanding for the existing kernels but also directs the design of new kernels." @default.
- W2564963669 created "2017-01-06" @default.
- W2564963669 creator A5079005304 @default.
- W2564963669 date "2018-04-01" @default.
- W2564963669 modified "2023-10-03" @default.
- W2564963669 title "On kernel design for regularized LTI system identification" @default.
- W2564963669 cites W1542271580 @default.
- W2564963669 cites W1862263964 @default.
- W2564963669 cites W1878468619 @default.
- W2564963669 cites W1900832178 @default.
- W2564963669 cites W1986280275 @default.
- W2564963669 cites W2003410526 @default.
- W2564963669 cites W2003967703 @default.
- W2564963669 cites W2006365485 @default.
- W2564963669 cites W2018490621 @default.
- W2564963669 cites W2021065610 @default.
- W2564963669 cites W2037479549 @default.
- W2564963669 cites W2086901931 @default.
- W2564963669 cites W2092766760 @default.
- W2564963669 cites W2093673101 @default.
- W2564963669 cites W2110652811 @default.
- W2564963669 cites W2160573809 @default.
- W2564963669 cites W2161083632 @default.
- W2564963669 cites W2163204284 @default.
- W2564963669 cites W2165867509 @default.
- W2564963669 cites W2419594319 @default.
- W2564963669 cites W2581561165 @default.
- W2564963669 cites W2783845704 @default.
- W2564963669 cites W2963212984 @default.
- W2564963669 cites W3102624673 @default.
- W2564963669 cites W3103767811 @default.
- W2564963669 doi "https://doi.org/10.1016/j.automatica.2017.12.039" @default.
- W2564963669 hasPublicationYear "2018" @default.
- W2564963669 type Work @default.
- W2564963669 sameAs 2564963669 @default.
- W2564963669 citedByCount "73" @default.
- W2564963669 countsByYear W25649636692017 @default.
- W2564963669 countsByYear W25649636692018 @default.
- W2564963669 countsByYear W25649636692019 @default.
- W2564963669 countsByYear W25649636692020 @default.
- W2564963669 countsByYear W25649636692021 @default.
- W2564963669 countsByYear W25649636692022 @default.
- W2564963669 countsByYear W25649636692023 @default.
- W2564963669 crossrefType "journal-article" @default.
- W2564963669 hasAuthorship W2564963669A5079005304 @default.
- W2564963669 hasBestOaLocation W25649636692 @default.
- W2564963669 hasConcept C11413529 @default.
- W2564963669 hasConcept C118615104 @default.
- W2564963669 hasConcept C119857082 @default.
- W2564963669 hasConcept C122280245 @default.
- W2564963669 hasConcept C12267149 @default.
- W2564963669 hasConcept C126255220 @default.
- W2564963669 hasConcept C134306372 @default.
- W2564963669 hasConcept C134517425 @default.
- W2564963669 hasConcept C154945302 @default.
- W2564963669 hasConcept C160446489 @default.
- W2564963669 hasConcept C27406209 @default.
- W2564963669 hasConcept C33923547 @default.
- W2564963669 hasConcept C41008148 @default.
- W2564963669 hasConcept C72279823 @default.
- W2564963669 hasConcept C74193536 @default.
- W2564963669 hasConcept C75866337 @default.
- W2564963669 hasConceptScore W2564963669C11413529 @default.
- W2564963669 hasConceptScore W2564963669C118615104 @default.
- W2564963669 hasConceptScore W2564963669C119857082 @default.
- W2564963669 hasConceptScore W2564963669C122280245 @default.
- W2564963669 hasConceptScore W2564963669C12267149 @default.
- W2564963669 hasConceptScore W2564963669C126255220 @default.
- W2564963669 hasConceptScore W2564963669C134306372 @default.
- W2564963669 hasConceptScore W2564963669C134517425 @default.
- W2564963669 hasConceptScore W2564963669C154945302 @default.
- W2564963669 hasConceptScore W2564963669C160446489 @default.
- W2564963669 hasConceptScore W2564963669C27406209 @default.
- W2564963669 hasConceptScore W2564963669C33923547 @default.
- W2564963669 hasConceptScore W2564963669C41008148 @default.
- W2564963669 hasConceptScore W2564963669C72279823 @default.
- W2564963669 hasConceptScore W2564963669C74193536 @default.
- W2564963669 hasConceptScore W2564963669C75866337 @default.
- W2564963669 hasFunder F4320321001 @default.
- W2564963669 hasFunder F4320322581 @default.
- W2564963669 hasFunder F4320322942 @default.
- W2564963669 hasLocation W25649636691 @default.
- W2564963669 hasLocation W25649636692 @default.
- W2564963669 hasOpenAccess W2564963669 @default.
- W2564963669 hasPrimaryLocation W25649636691 @default.
- W2564963669 hasRelatedWork W2095626363 @default.
- W2564963669 hasRelatedWork W2353199197 @default.
- W2564963669 hasRelatedWork W2371064519 @default.
- W2564963669 hasRelatedWork W2371165991 @default.
- W2564963669 hasRelatedWork W2382704364 @default.
- W2564963669 hasRelatedWork W2384322977 @default.
- W2564963669 hasRelatedWork W2420851703 @default.
- W2564963669 hasRelatedWork W2483985259 @default.
- W2564963669 hasRelatedWork W4306800962 @default.
- W2564963669 hasRelatedWork W4311472972 @default.
- W2564963669 hasVolume "90" @default.
- W2564963669 isParatext "false" @default.
- W2564963669 isRetracted "false" @default.