Matches in SemOpenAlex for { <https://semopenalex.org/work/W2564963710> ?p ?o ?g. }
- W2564963710 endingPage "378" @default.
- W2564963710 startingPage "364" @default.
- W2564963710 abstract "We introduce a novel multivariate random process producing Bernoulli outputs per dimension, that can possibly formalize binary interactions in various graphical structures and can be used to model opinion dynamics, epidemics, financial and biological time series data, etc. We call this a Bernoulli Autoregressive Process (BAR). A BAR process models a discrete-time vector random sequence of $p$ scalar Bernoulli processes with autoregressive dynamics and corresponds to a particular Markov Chain. The benefit from the autoregressive dynamics is the description of a $2^ptimes 2^p$ transition matrix by at most $pd$ effective parameters for some $dll p$ or by two sparse matrices of dimensions $ptimes p^2$ and $ptimes p$, respectively, parameterizing the transitions. Additionally, we show that the BAR process mixes rapidly, by proving that the mixing time is $O(log p)$. The hidden constant in the previous mixing time bound depends explicitly on the values of the chain parameters and implicitly on the maximum allowed in-degree of a node in the corresponding graph. For a network with $p$ nodes, where each node has in-degree at most $d$ and corresponds to a scalar Bernoulli process generated by a BAR, we provide a greedy algorithm that can efficiently learn the structure of the underlying directed graph with a sample complexity proportional to the mixing time of the BAR process. The sample complexity of the proposed algorithm is nearly order-optimal as it is only a $log p$ factor away from an information-theoretic lower bound. We present simulation results illustrating the performance of our algorithm in various setups, including a model for a biological signaling network." @default.
- W2564963710 created "2017-01-06" @default.
- W2564963710 creator A5033667806 @default.
- W2564963710 creator A5043282337 @default.
- W2564963710 creator A5078518595 @default.
- W2564963710 date "2019-07-01" @default.
- W2564963710 modified "2023-10-03" @default.
- W2564963710 title "Mixing Times and Structural Inference for Bernoulli Autoregressive Processes" @default.
- W2564963710 cites W1544632947 @default.
- W2564963710 cites W1600293573 @default.
- W2564963710 cites W1858345456 @default.
- W2564963710 cites W1969880349 @default.
- W2564963710 cites W2004036579 @default.
- W2564963710 cites W2011796130 @default.
- W2564963710 cites W2018807138 @default.
- W2564963710 cites W2049250173 @default.
- W2564963710 cites W2068000292 @default.
- W2564963710 cites W2092418988 @default.
- W2564963710 cites W2104566743 @default.
- W2564963710 cites W2108829665 @default.
- W2564963710 cites W2159402338 @default.
- W2564963710 cites W2168970605 @default.
- W2564963710 cites W2178225550 @default.
- W2564963710 cites W2339248690 @default.
- W2564963710 cites W2540401547 @default.
- W2564963710 cites W2737156935 @default.
- W2564963710 cites W2963250855 @default.
- W2564963710 cites W2963509119 @default.
- W2564963710 cites W2963675110 @default.
- W2564963710 cites W3098888484 @default.
- W2564963710 cites W3103643510 @default.
- W2564963710 doi "https://doi.org/10.1109/tnse.2018.2829520" @default.
- W2564963710 hasPublicationYear "2019" @default.
- W2564963710 type Work @default.
- W2564963710 sameAs 2564963710 @default.
- W2564963710 citedByCount "10" @default.
- W2564963710 countsByYear W25649637102019 @default.
- W2564963710 countsByYear W25649637102020 @default.
- W2564963710 countsByYear W25649637102022 @default.
- W2564963710 crossrefType "journal-article" @default.
- W2564963710 hasAuthorship W2564963710A5033667806 @default.
- W2564963710 hasAuthorship W2564963710A5043282337 @default.
- W2564963710 hasAuthorship W2564963710A5078518595 @default.
- W2564963710 hasBestOaLocation W25649637102 @default.
- W2564963710 hasConcept C105795698 @default.
- W2564963710 hasConcept C11413529 @default.
- W2564963710 hasConcept C114614502 @default.
- W2564963710 hasConcept C121332964 @default.
- W2564963710 hasConcept C121864883 @default.
- W2564963710 hasConcept C134306372 @default.
- W2564963710 hasConcept C138777275 @default.
- W2564963710 hasConcept C151406439 @default.
- W2564963710 hasConcept C152361515 @default.
- W2564963710 hasConcept C159877910 @default.
- W2564963710 hasConcept C185429906 @default.
- W2564963710 hasConcept C194657046 @default.
- W2564963710 hasConcept C23990920 @default.
- W2564963710 hasConcept C24338571 @default.
- W2564963710 hasConcept C2524010 @default.
- W2564963710 hasConcept C28826006 @default.
- W2564963710 hasConcept C33923547 @default.
- W2564963710 hasConcept C57691317 @default.
- W2564963710 hasConcept C62520636 @default.
- W2564963710 hasConcept C77553402 @default.
- W2564963710 hasConcept C8272713 @default.
- W2564963710 hasConcept C97355855 @default.
- W2564963710 hasConcept C98763669 @default.
- W2564963710 hasConceptScore W2564963710C105795698 @default.
- W2564963710 hasConceptScore W2564963710C11413529 @default.
- W2564963710 hasConceptScore W2564963710C114614502 @default.
- W2564963710 hasConceptScore W2564963710C121332964 @default.
- W2564963710 hasConceptScore W2564963710C121864883 @default.
- W2564963710 hasConceptScore W2564963710C134306372 @default.
- W2564963710 hasConceptScore W2564963710C138777275 @default.
- W2564963710 hasConceptScore W2564963710C151406439 @default.
- W2564963710 hasConceptScore W2564963710C152361515 @default.
- W2564963710 hasConceptScore W2564963710C159877910 @default.
- W2564963710 hasConceptScore W2564963710C185429906 @default.
- W2564963710 hasConceptScore W2564963710C194657046 @default.
- W2564963710 hasConceptScore W2564963710C23990920 @default.
- W2564963710 hasConceptScore W2564963710C24338571 @default.
- W2564963710 hasConceptScore W2564963710C2524010 @default.
- W2564963710 hasConceptScore W2564963710C28826006 @default.
- W2564963710 hasConceptScore W2564963710C33923547 @default.
- W2564963710 hasConceptScore W2564963710C57691317 @default.
- W2564963710 hasConceptScore W2564963710C62520636 @default.
- W2564963710 hasConceptScore W2564963710C77553402 @default.
- W2564963710 hasConceptScore W2564963710C8272713 @default.
- W2564963710 hasConceptScore W2564963710C97355855 @default.
- W2564963710 hasConceptScore W2564963710C98763669 @default.
- W2564963710 hasIssue "3" @default.
- W2564963710 hasLocation W25649637101 @default.
- W2564963710 hasLocation W25649637102 @default.
- W2564963710 hasOpenAccess W2564963710 @default.
- W2564963710 hasPrimaryLocation W25649637101 @default.
- W2564963710 hasRelatedWork W1530496860 @default.
- W2564963710 hasRelatedWork W1994861439 @default.
- W2564963710 hasRelatedWork W2062305635 @default.