Matches in SemOpenAlex for { <https://semopenalex.org/work/W2565001539> ?p ?o ?g. }
- W2565001539 endingPage "47" @default.
- W2565001539 startingPage "35" @default.
- W2565001539 abstract "The development of rainfall/runoff models involves extensive computation and the availability of different coexisting platforms, including numerical flow models and GIS for their physiographical characterization. In this paper we present a data-driven approach which avoids the use of GIS, but is based on a combination of Principal Component Analysis (PCA) and an Adaptive Neuro Fuzzy Inference System (ANFIS) to produce a simple and effective output flow prediction based on previous rainfall/runoff data in the catchment. The emphasis of the paper is on how to set-up an efficient data structure that produces a good output flow estimation. The PCA approach is compared to the Thiessen polygons method, requiring GIS, and we demonstrate that the former can produce a better ANFIS model, with less algorithmic complexity and improved accuracy. The combined PCA + ANFIS procedure is applied to two minor river basins in Tuscany, Italy, to demonstrate its effectiveness." @default.
- W2565001539 created "2017-01-06" @default.
- W2565001539 creator A5001064889 @default.
- W2565001539 creator A5007244103 @default.
- W2565001539 creator A5012685836 @default.
- W2565001539 creator A5034166387 @default.
- W2565001539 creator A5080189326 @default.
- W2565001539 date "2018-08-01" @default.
- W2565001539 modified "2023-09-25" @default.
- W2565001539 title "Data-driven rainfall/runoff modelling based on a neuro-fuzzy inference system" @default.
- W2565001539 cites W1483767701 @default.
- W2565001539 cites W176733005 @default.
- W2565001539 cites W1966863755 @default.
- W2565001539 cites W1969000438 @default.
- W2565001539 cites W1969165252 @default.
- W2565001539 cites W1970446094 @default.
- W2565001539 cites W1977364986 @default.
- W2565001539 cites W2003516238 @default.
- W2565001539 cites W2007318060 @default.
- W2565001539 cites W2009353392 @default.
- W2565001539 cites W2019207321 @default.
- W2565001539 cites W2027402385 @default.
- W2565001539 cites W2034400748 @default.
- W2565001539 cites W2055017312 @default.
- W2565001539 cites W2056231849 @default.
- W2565001539 cites W2056466847 @default.
- W2565001539 cites W2057446454 @default.
- W2565001539 cites W2063212999 @default.
- W2565001539 cites W2079325629 @default.
- W2565001539 cites W2088692763 @default.
- W2565001539 cites W2090729373 @default.
- W2565001539 cites W2093584539 @default.
- W2565001539 cites W2101342564 @default.
- W2565001539 cites W2121203842 @default.
- W2565001539 cites W2126289419 @default.
- W2565001539 cites W2128728535 @default.
- W2565001539 cites W2145245779 @default.
- W2565001539 cites W2172147742 @default.
- W2565001539 cites W2187234032 @default.
- W2565001539 cites W2557097209 @default.
- W2565001539 cites W2580165985 @default.
- W2565001539 doi "https://doi.org/10.1016/j.envsoft.2017.11.026" @default.
- W2565001539 hasPublicationYear "2018" @default.
- W2565001539 type Work @default.
- W2565001539 sameAs 2565001539 @default.
- W2565001539 citedByCount "38" @default.
- W2565001539 countsByYear W25650015392018 @default.
- W2565001539 countsByYear W25650015392019 @default.
- W2565001539 countsByYear W25650015392020 @default.
- W2565001539 countsByYear W25650015392021 @default.
- W2565001539 countsByYear W25650015392022 @default.
- W2565001539 countsByYear W25650015392023 @default.
- W2565001539 crossrefType "journal-article" @default.
- W2565001539 hasAuthorship W2565001539A5001064889 @default.
- W2565001539 hasAuthorship W2565001539A5007244103 @default.
- W2565001539 hasAuthorship W2565001539A5012685836 @default.
- W2565001539 hasAuthorship W2565001539A5034166387 @default.
- W2565001539 hasAuthorship W2565001539A5080189326 @default.
- W2565001539 hasConcept C11413529 @default.
- W2565001539 hasConcept C121332964 @default.
- W2565001539 hasConcept C124101348 @default.
- W2565001539 hasConcept C127413603 @default.
- W2565001539 hasConcept C154945302 @default.
- W2565001539 hasConcept C168167062 @default.
- W2565001539 hasConcept C177264268 @default.
- W2565001539 hasConcept C186108316 @default.
- W2565001539 hasConcept C18903297 @default.
- W2565001539 hasConcept C195975749 @default.
- W2565001539 hasConcept C199360897 @default.
- W2565001539 hasConcept C21200559 @default.
- W2565001539 hasConcept C24326235 @default.
- W2565001539 hasConcept C27438332 @default.
- W2565001539 hasConcept C2776214188 @default.
- W2565001539 hasConcept C41008148 @default.
- W2565001539 hasConcept C45374587 @default.
- W2565001539 hasConcept C50477045 @default.
- W2565001539 hasConcept C58166 @default.
- W2565001539 hasConcept C58489278 @default.
- W2565001539 hasConcept C86803240 @default.
- W2565001539 hasConcept C97355855 @default.
- W2565001539 hasConceptScore W2565001539C11413529 @default.
- W2565001539 hasConceptScore W2565001539C121332964 @default.
- W2565001539 hasConceptScore W2565001539C124101348 @default.
- W2565001539 hasConceptScore W2565001539C127413603 @default.
- W2565001539 hasConceptScore W2565001539C154945302 @default.
- W2565001539 hasConceptScore W2565001539C168167062 @default.
- W2565001539 hasConceptScore W2565001539C177264268 @default.
- W2565001539 hasConceptScore W2565001539C186108316 @default.
- W2565001539 hasConceptScore W2565001539C18903297 @default.
- W2565001539 hasConceptScore W2565001539C195975749 @default.
- W2565001539 hasConceptScore W2565001539C199360897 @default.
- W2565001539 hasConceptScore W2565001539C21200559 @default.
- W2565001539 hasConceptScore W2565001539C24326235 @default.
- W2565001539 hasConceptScore W2565001539C27438332 @default.
- W2565001539 hasConceptScore W2565001539C2776214188 @default.
- W2565001539 hasConceptScore W2565001539C41008148 @default.
- W2565001539 hasConceptScore W2565001539C45374587 @default.
- W2565001539 hasConceptScore W2565001539C50477045 @default.