Matches in SemOpenAlex for { <https://semopenalex.org/work/W2565114306> ?p ?o ?g. }
- W2565114306 endingPage "94" @default.
- W2565114306 startingPage "63" @default.
- W2565114306 abstract "Schoof’s classic algorithm allows point-counting for elliptic curves over finite fields in polynomial time. This algorithm was subsequently improved by Atkin, using factorizations of modular polynomials, and by Elkies, using a theory of explicit isogenies. Moving to Jacobians of genus-2 curves, the current state of the art for point counting is a generalization of Schoof’s algorithm. While we are currently missing the tools we need to generalize Elkies’ methods to genus 2, recently Martindale and Milio have computed analogues of modular polynomials for genus-2 curves whose Jacobians have real multiplication by maximal orders of small discriminant. In this chapter, we prove Atkin-style results for genus-2 Jacobians with real multiplication by maximal orders, with a view to using these new modular polynomials to improve the practicality of point-counting algorithms for these curves." @default.
- W2565114306 created "2017-01-06" @default.
- W2565114306 creator A5036700593 @default.
- W2565114306 creator A5039797547 @default.
- W2565114306 creator A5046775082 @default.
- W2565114306 creator A5057832855 @default.
- W2565114306 creator A5075016098 @default.
- W2565114306 creator A5081112709 @default.
- W2565114306 creator A5085656367 @default.
- W2565114306 date "2017-01-01" @default.
- W2565114306 modified "2023-10-01" @default.
- W2565114306 title "Isogenies for Point Counting on Genus Two Hyperelliptic Curves with Maximal Real Multiplication" @default.
- W2565114306 cites W1539140451 @default.
- W2565114306 cites W1761705715 @default.
- W2565114306 cites W1966399236 @default.
- W2565114306 cites W1993930656 @default.
- W2565114306 cites W2019974682 @default.
- W2565114306 cites W2037816851 @default.
- W2565114306 cites W2066956506 @default.
- W2565114306 cites W2068992505 @default.
- W2565114306 cites W2069485873 @default.
- W2565114306 cites W2129089669 @default.
- W2565114306 cites W2221805691 @default.
- W2565114306 cites W2321133125 @default.
- W2565114306 cites W2323042046 @default.
- W2565114306 cites W2515240275 @default.
- W2565114306 cites W2964117893 @default.
- W2565114306 cites W4232274958 @default.
- W2565114306 doi "https://doi.org/10.1007/978-3-319-63931-4_3" @default.
- W2565114306 hasPublicationYear "2017" @default.
- W2565114306 type Work @default.
- W2565114306 sameAs 2565114306 @default.
- W2565114306 citedByCount "5" @default.
- W2565114306 countsByYear W25651143062019 @default.
- W2565114306 countsByYear W25651143062020 @default.
- W2565114306 countsByYear W25651143062021 @default.
- W2565114306 countsByYear W25651143062022 @default.
- W2565114306 crossrefType "book-chapter" @default.
- W2565114306 hasAuthorship W2565114306A5036700593 @default.
- W2565114306 hasAuthorship W2565114306A5039797547 @default.
- W2565114306 hasAuthorship W2565114306A5046775082 @default.
- W2565114306 hasAuthorship W2565114306A5057832855 @default.
- W2565114306 hasAuthorship W2565114306A5075016098 @default.
- W2565114306 hasAuthorship W2565114306A5081112709 @default.
- W2565114306 hasAuthorship W2565114306A5085656367 @default.
- W2565114306 hasBestOaLocation W25651143062 @default.
- W2565114306 hasConcept C101468663 @default.
- W2565114306 hasConcept C111919701 @default.
- W2565114306 hasConcept C114614502 @default.
- W2565114306 hasConcept C118615104 @default.
- W2565114306 hasConcept C134306372 @default.
- W2565114306 hasConcept C154945302 @default.
- W2565114306 hasConcept C157369684 @default.
- W2565114306 hasConcept C177148314 @default.
- W2565114306 hasConcept C179603306 @default.
- W2565114306 hasConcept C202444582 @default.
- W2565114306 hasConcept C2780595030 @default.
- W2565114306 hasConcept C33923547 @default.
- W2565114306 hasConcept C41008148 @default.
- W2565114306 hasConcept C59822182 @default.
- W2565114306 hasConcept C78397625 @default.
- W2565114306 hasConcept C80146680 @default.
- W2565114306 hasConcept C86803240 @default.
- W2565114306 hasConcept C90119067 @default.
- W2565114306 hasConceptScore W2565114306C101468663 @default.
- W2565114306 hasConceptScore W2565114306C111919701 @default.
- W2565114306 hasConceptScore W2565114306C114614502 @default.
- W2565114306 hasConceptScore W2565114306C118615104 @default.
- W2565114306 hasConceptScore W2565114306C134306372 @default.
- W2565114306 hasConceptScore W2565114306C154945302 @default.
- W2565114306 hasConceptScore W2565114306C157369684 @default.
- W2565114306 hasConceptScore W2565114306C177148314 @default.
- W2565114306 hasConceptScore W2565114306C179603306 @default.
- W2565114306 hasConceptScore W2565114306C202444582 @default.
- W2565114306 hasConceptScore W2565114306C2780595030 @default.
- W2565114306 hasConceptScore W2565114306C33923547 @default.
- W2565114306 hasConceptScore W2565114306C41008148 @default.
- W2565114306 hasConceptScore W2565114306C59822182 @default.
- W2565114306 hasConceptScore W2565114306C78397625 @default.
- W2565114306 hasConceptScore W2565114306C80146680 @default.
- W2565114306 hasConceptScore W2565114306C86803240 @default.
- W2565114306 hasConceptScore W2565114306C90119067 @default.
- W2565114306 hasLocation W25651143061 @default.
- W2565114306 hasLocation W25651143062 @default.
- W2565114306 hasLocation W25651143063 @default.
- W2565114306 hasLocation W25651143064 @default.
- W2565114306 hasLocation W25651143065 @default.
- W2565114306 hasLocation W25651143066 @default.
- W2565114306 hasLocation W25651143067 @default.
- W2565114306 hasLocation W25651143068 @default.
- W2565114306 hasOpenAccess W2565114306 @default.
- W2565114306 hasPrimaryLocation W25651143061 @default.
- W2565114306 hasRelatedWork W1646605134 @default.
- W2565114306 hasRelatedWork W1997081444 @default.
- W2565114306 hasRelatedWork W2034507757 @default.
- W2565114306 hasRelatedWork W2036821674 @default.
- W2565114306 hasRelatedWork W2040051284 @default.
- W2565114306 hasRelatedWork W2049401387 @default.