Matches in SemOpenAlex for { <https://semopenalex.org/work/W2565253666> ?p ?o ?g. }
- W2565253666 endingPage "173" @default.
- W2565253666 startingPage "152" @default.
- W2565253666 abstract "The Xitian W–Sn district is located in eastern Hunan Province of SE China and comprises the Heshuxia, Goudalan, and Longshang W–Sn deposits. Our study on the occurrence, mineral assemblage, and geochemistry of the orebodies shows that quartz-vein orebodies are dominant mode of mineralization and can be divided into three stages: stage I, quartz–molybdenite–wolframite (I); stage II, quartz–wolframite (II)–polymetallic sulfides; and stage III, quartz–pyrite–fluorite. The elements Nb, Ta, Sc, Sn, Zn, Cr, V, Mo, Cu, and Zr are abundant in both wolframite (I) and wolframite (II). Wolframite (I) contains higher concentrations of Nb (1408–9245 ppm), Ta (241–2407 ppm), and Sc (123–521 ppm) than wolframite (II) (Nb 144–1080 ppm, Ta 3.76–315 ppm, and Sc 1.86–11.44 ppm). These results indicate that wolframite (I) was formed closer to the host rock and at a greater ore-forming depth than wolframite (II). The total REE concentrations of wolframite (I) and (II) range from 34.96 to 133.36 ppm and 21.30 to 43.73 ppm, respectively. Both wolframite (I) and wolframite (II) have low LREE concentrations (0.00–0.05 and 0.08–8.18 ppm, respectively) and high HREE concentrations (34.96–133.31 and 21.23–41.87 ppm, respectively). The enrichment of HREEs in wolframite may be due to the fact that the sizes of the HREEs3+ (0.94–1.02 Å) in combination with Nb5+ or Ta5+ (0.72 Å) are closer to that of W6+ (0.68 Å) in combination with Ca2+ (1.08 Å) or Mg2+ (0.80 Å) than that of the LREEs3+ (1.03–1.13 Å), making the coupled substitution easier. A study of fluid inclusions in the coexisting gangue minerals shows that the homogenization temperatures of the fluid inclusions decrease from stage I to stage III (stage I, 187–382 °C, average 275 °C; stage II, 122–278 °C, average 175 °C; stage III, 92–172 °C, average 139 °C), whereas the salinities of the fluid inclusions increase from stages I to II and decrease from stages II to III (stage I, 1.8–18.2 wt% NaCleqv, average 10.3 wt% NaCleqv; stage II, 7.3–24.4 wt% NaCleqv, average 14.9 wt% NaCleqv; stage III, 0.2–5.3 wt% NaCleqv, average 1.5 wt% NaCleqv). Raman spectroscopy reveals that the fluid inclusions mainly contain H2O; CO2 is minor and H2S, CH4, and N2 are rare. We conclude that the formation of wolframite was driven by post-magmatic thermodynamic processes. The ore-forming fluid flowed through a multi-fractured low-pressure zone in the fault system in the district, and a temperature–pressure decrease led to fluid immiscibility characterized by CO2 escaping in a low-pH and high-Eh environment in stage I, crust–mantle mixed fluid and meteoric water mixing in stage II, and natural cooling of the fluid system in stage III." @default.
- W2565253666 created "2017-01-06" @default.
- W2565253666 creator A5005921435 @default.
- W2565253666 creator A5008336093 @default.
- W2565253666 creator A5014060935 @default.
- W2565253666 creator A5034880906 @default.
- W2565253666 creator A5070587282 @default.
- W2565253666 creator A5073463013 @default.
- W2565253666 creator A5082849791 @default.
- W2565253666 creator A5082937922 @default.
- W2565253666 date "2017-04-01" @default.
- W2565253666 modified "2023-10-16" @default.
- W2565253666 title "Ore-forming mechanism of quartz-vein-type W-Sn deposits of the Xitian district in SE China: Implications from the trace element analysis of wolframite and investigation of fluid inclusions" @default.
- W2565253666 cites W1525258218 @default.
- W2565253666 cites W1792263819 @default.
- W2565253666 cites W1965749890 @default.
- W2565253666 cites W1966756346 @default.
- W2565253666 cites W1968583876 @default.
- W2565253666 cites W1969725957 @default.
- W2565253666 cites W1974336211 @default.
- W2565253666 cites W1978602863 @default.
- W2565253666 cites W1979576231 @default.
- W2565253666 cites W1988315731 @default.
- W2565253666 cites W1991520358 @default.
- W2565253666 cites W1994686000 @default.
- W2565253666 cites W2000787111 @default.
- W2565253666 cites W2013535259 @default.
- W2565253666 cites W2016520118 @default.
- W2565253666 cites W2017448452 @default.
- W2565253666 cites W2020470746 @default.
- W2565253666 cites W2023627687 @default.
- W2565253666 cites W2026986830 @default.
- W2565253666 cites W2037913789 @default.
- W2565253666 cites W2041657254 @default.
- W2565253666 cites W2042173627 @default.
- W2565253666 cites W2042402460 @default.
- W2565253666 cites W2042795036 @default.
- W2565253666 cites W2043542400 @default.
- W2565253666 cites W2054489874 @default.
- W2565253666 cites W2054624167 @default.
- W2565253666 cites W2056275411 @default.
- W2565253666 cites W2057898352 @default.
- W2565253666 cites W2058064686 @default.
- W2565253666 cites W2065940550 @default.
- W2565253666 cites W2075360204 @default.
- W2565253666 cites W2077266669 @default.
- W2565253666 cites W2082624801 @default.
- W2565253666 cites W2083073541 @default.
- W2565253666 cites W2086213893 @default.
- W2565253666 cites W2092778941 @default.
- W2565253666 cites W2101656601 @default.
- W2565253666 cites W2101892081 @default.
- W2565253666 cites W2108740208 @default.
- W2565253666 cites W2111299008 @default.
- W2565253666 cites W2120959171 @default.
- W2565253666 cites W2128758986 @default.
- W2565253666 cites W2130671976 @default.
- W2565253666 cites W2133042542 @default.
- W2565253666 cites W2140093647 @default.
- W2565253666 cites W2154295153 @default.
- W2565253666 cites W2154499471 @default.
- W2565253666 cites W2154506653 @default.
- W2565253666 cites W2155803469 @default.
- W2565253666 cites W2160264322 @default.
- W2565253666 cites W2161680328 @default.
- W2565253666 cites W2167795033 @default.
- W2565253666 cites W2170641462 @default.
- W2565253666 cites W2170770997 @default.
- W2565253666 cites W2338603611 @default.
- W2565253666 cites W2491801666 @default.
- W2565253666 cites W4230128562 @default.
- W2565253666 cites W2075700613 @default.
- W2565253666 doi "https://doi.org/10.1016/j.oregeorev.2016.12.007" @default.
- W2565253666 hasPublicationYear "2017" @default.
- W2565253666 type Work @default.
- W2565253666 sameAs 2565253666 @default.
- W2565253666 citedByCount "60" @default.
- W2565253666 countsByYear W25652536662017 @default.
- W2565253666 countsByYear W25652536662018 @default.
- W2565253666 countsByYear W25652536662019 @default.
- W2565253666 countsByYear W25652536662020 @default.
- W2565253666 countsByYear W25652536662021 @default.
- W2565253666 countsByYear W25652536662022 @default.
- W2565253666 countsByYear W25652536662023 @default.
- W2565253666 crossrefType "journal-article" @default.
- W2565253666 hasAuthorship W2565253666A5005921435 @default.
- W2565253666 hasAuthorship W2565253666A5008336093 @default.
- W2565253666 hasAuthorship W2565253666A5014060935 @default.
- W2565253666 hasAuthorship W2565253666A5034880906 @default.
- W2565253666 hasAuthorship W2565253666A5070587282 @default.
- W2565253666 hasAuthorship W2565253666A5073463013 @default.
- W2565253666 hasAuthorship W2565253666A5082849791 @default.
- W2565253666 hasAuthorship W2565253666A5082937922 @default.
- W2565253666 hasConcept C111696902 @default.
- W2565253666 hasConcept C127313418 @default.
- W2565253666 hasConcept C151730666 @default.
- W2565253666 hasConcept C159390177 @default.
- W2565253666 hasConcept C159750122 @default.