Matches in SemOpenAlex for { <https://semopenalex.org/work/W2565473608> ?p ?o ?g. }
- W2565473608 endingPage "38" @default.
- W2565473608 startingPage "1" @default.
- W2565473608 abstract "With the booming popularity of online social networks like Twitter and Weibo, online user footprints are accumulating rapidly on the social web. Simultaneously, the question of how to leverage the large-scale user-generated social media data for personal credit scoring comes into the sight of both researchers and practitioners. It has also become a topic of great importance and growing interest in the P2P lending industry. However, compared with traditional financial data, heterogeneous social data presents both opportunities and challenges for personal credit scoring. In this article, we seek a deep understanding of how to learn users’ credit labels from social data in a comprehensive and efficient way. Particularly, we explore the social-data-based credit scoring problem under the micro-blogging setting for its open, simple, and real-time nature. To identify credit-related evidence hidden in social data, we choose to conduct an analytical and empirical study on a large-scale dataset from Weibo, the largest and most popular tweet-style website in China. Summarizing results from existing credit scoring literature, we first propose three social-data-based credit scoring principles as guidelines for in-depth exploration. In addition, we glean six credit-related insights arising from empirical observations of the testbed dataset. Based on the proposed principles and insights, we extract prediction features mainly from three categories of users’ social data, including demographics, tweets, and networks. To harness this broad range of features, we put forward a two-tier stacking and boosting enhanced ensemble learning framework. Quantitative investigation of the extracted features shows that online social media data does have good potential in discriminating good credit users from bad. Furthermore, we perform experiments on the real-world Weibo dataset consisting of more than 7.3 million tweets and 200,000 users whose credit labels are known through our third-party partner. Experimental results show that (i) our approach achieves a roughly 0.625 AUC value with all the proposed social features as input, and (ii) our learning algorithm can outperform traditional credit scoring methods by as much as 17% for social-data-based personal credit scoring." @default.
- W2565473608 created "2017-01-06" @default.
- W2565473608 creator A5003692270 @default.
- W2565473608 creator A5024598580 @default.
- W2565473608 creator A5033706423 @default.
- W2565473608 creator A5048237545 @default.
- W2565473608 creator A5068840711 @default.
- W2565473608 creator A5085028455 @default.
- W2565473608 date "2016-12-15" @default.
- W2565473608 modified "2023-10-14" @default.
- W2565473608 title "From Footprint to Evidence" @default.
- W2565473608 cites W1500693574 @default.
- W2565473608 cites W1872023060 @default.
- W2565473608 cites W1880262756 @default.
- W2565473608 cites W1965586806 @default.
- W2565473608 cites W1973704036 @default.
- W2565473608 cites W1982120517 @default.
- W2565473608 cites W1982644216 @default.
- W2565473608 cites W1984104714 @default.
- W2565473608 cites W1988906723 @default.
- W2565473608 cites W1994085451 @default.
- W2565473608 cites W1998046699 @default.
- W2565473608 cites W1999003247 @default.
- W2565473608 cites W2001082470 @default.
- W2565473608 cites W2006342384 @default.
- W2565473608 cites W2012833704 @default.
- W2565473608 cites W2013416264 @default.
- W2565473608 cites W2017729405 @default.
- W2565473608 cites W2018277822 @default.
- W2565473608 cites W2025294397 @default.
- W2565473608 cites W2030214288 @default.
- W2565473608 cites W2035908274 @default.
- W2565473608 cites W2037877289 @default.
- W2565473608 cites W2050362133 @default.
- W2565473608 cites W2058988827 @default.
- W2565473608 cites W2061820396 @default.
- W2565473608 cites W2063904635 @default.
- W2565473608 cites W2065130322 @default.
- W2565473608 cites W2092240518 @default.
- W2565473608 cites W2103780778 @default.
- W2565473608 cites W2107961038 @default.
- W2565473608 cites W2109553965 @default.
- W2565473608 cites W2116660956 @default.
- W2565473608 cites W2117352691 @default.
- W2565473608 cites W2124499489 @default.
- W2565473608 cites W2133990480 @default.
- W2565473608 cites W2135411679 @default.
- W2565473608 cites W2136486572 @default.
- W2565473608 cites W2149394571 @default.
- W2565473608 cites W2155653793 @default.
- W2565473608 cites W2155806188 @default.
- W2565473608 cites W2158068969 @default.
- W2565473608 cites W2167521368 @default.
- W2565473608 cites W2168123127 @default.
- W2565473608 cites W2168346693 @default.
- W2565473608 cites W2171468534 @default.
- W2565473608 cites W2251009596 @default.
- W2565473608 cites W2252926514 @default.
- W2565473608 cites W2278756223 @default.
- W2565473608 cites W2351270763 @default.
- W2565473608 cites W2413333120 @default.
- W2565473608 cites W2911964244 @default.
- W2565473608 cites W3121325984 @default.
- W2565473608 cites W3121716941 @default.
- W2565473608 cites W3123591829 @default.
- W2565473608 cites W3124786382 @default.
- W2565473608 doi "https://doi.org/10.1145/2996465" @default.
- W2565473608 hasPublicationYear "2016" @default.
- W2565473608 type Work @default.
- W2565473608 sameAs 2565473608 @default.
- W2565473608 citedByCount "24" @default.
- W2565473608 countsByYear W25654736082018 @default.
- W2565473608 countsByYear W25654736082019 @default.
- W2565473608 countsByYear W25654736082020 @default.
- W2565473608 countsByYear W25654736082021 @default.
- W2565473608 countsByYear W25654736082022 @default.
- W2565473608 countsByYear W25654736082023 @default.
- W2565473608 crossrefType "journal-article" @default.
- W2565473608 hasAuthorship W2565473608A5003692270 @default.
- W2565473608 hasAuthorship W2565473608A5024598580 @default.
- W2565473608 hasAuthorship W2565473608A5033706423 @default.
- W2565473608 hasAuthorship W2565473608A5048237545 @default.
- W2565473608 hasAuthorship W2565473608A5068840711 @default.
- W2565473608 hasAuthorship W2565473608A5085028455 @default.
- W2565473608 hasBestOaLocation W25654736082 @default.
- W2565473608 hasConcept C119857082 @default.
- W2565473608 hasConcept C136764020 @default.
- W2565473608 hasConcept C143275388 @default.
- W2565473608 hasConcept C145097563 @default.
- W2565473608 hasConcept C153083717 @default.
- W2565473608 hasConcept C15744967 @default.
- W2565473608 hasConcept C2522767166 @default.
- W2565473608 hasConcept C2780586970 @default.
- W2565473608 hasConcept C2983355114 @default.
- W2565473608 hasConcept C41008148 @default.
- W2565473608 hasConcept C518677369 @default.
- W2565473608 hasConcept C77805123 @default.
- W2565473608 hasConceptScore W2565473608C119857082 @default.