Matches in SemOpenAlex for { <https://semopenalex.org/work/W2565482870> ?p ?o ?g. }
- W2565482870 abstract "In this paper, we present an efficient fast learning algorithm for regression problems using meta-cognitive extreme learning machine(McELM). The proposed algorithm has two components, namely the cognitive component and meta-cognitive component. The cognitive component is an extreme learning machine (ELM) while the meta-cognitive component which controls the cognitive component employs a self-regulating learning mechanism to decide what to learn, when to learn and how to learn. The meta-cognitive component chooses suitable learning method based on the samples presented namely, delete sample, reserve sample and network update. The use of ELM improves the network speed and reduces computational cost. Unlike traditional ELM, the number of hidden layers is not fixed priori in McELM, instead, the network is built during the learning phase. This algorithm is evaluated on a set of benchmark regression and approximation problems and also on a real-world wind force and moment coefficient prediction problem. Performance results in this study highlight that McELM can achieve better results compared with conventional ELM, support vector regression (SVR)." @default.
- W2565482870 created "2017-01-06" @default.
- W2565482870 creator A5017493688 @default.
- W2565482870 creator A5019720185 @default.
- W2565482870 creator A5028967059 @default.
- W2565482870 date "2016-08-01" @default.
- W2565482870 modified "2023-09-22" @default.
- W2565482870 title "Meta-cognitive extreme learning machine for regression problems" @default.
- W2565482870 cites W1154478554 @default.
- W2565482870 cites W1677877222 @default.
- W2565482870 cites W1731748326 @default.
- W2565482870 cites W1965198822 @default.
- W2565482870 cites W1968930420 @default.
- W2565482870 cites W1969885712 @default.
- W2565482870 cites W1974887910 @default.
- W2565482870 cites W1975926472 @default.
- W2565482870 cites W1986278072 @default.
- W2565482870 cites W1993717606 @default.
- W2565482870 cites W1999698583 @default.
- W2565482870 cites W2012903341 @default.
- W2565482870 cites W2014265695 @default.
- W2565482870 cites W2026131661 @default.
- W2565482870 cites W2030842930 @default.
- W2565482870 cites W2052873478 @default.
- W2565482870 cites W2058128874 @default.
- W2565482870 cites W2094631910 @default.
- W2565482870 cites W2109529553 @default.
- W2565482870 cites W2110158084 @default.
- W2565482870 cites W2114865067 @default.
- W2565482870 cites W2126546338 @default.
- W2565482870 cites W2129013743 @default.
- W2565482870 cites W2134603844 @default.
- W2565482870 cites W2136340804 @default.
- W2565482870 cites W2139055047 @default.
- W2565482870 cites W2141695047 @default.
- W2565482870 cites W2141804730 @default.
- W2565482870 cites W2151630758 @default.
- W2565482870 cites W2153635508 @default.
- W2565482870 cites W2157166487 @default.
- W2565482870 cites W2158054309 @default.
- W2565482870 cites W2158081225 @default.
- W2565482870 cites W2162071708 @default.
- W2565482870 cites W2165729498 @default.
- W2565482870 cites W2168618665 @default.
- W2565482870 cites W2169976759 @default.
- W2565482870 cites W2313953460 @default.
- W2565482870 cites W2343538158 @default.
- W2565482870 cites W2344580970 @default.
- W2565482870 cites W607853484 @default.
- W2565482870 cites W94523489 @default.
- W2565482870 doi "https://doi.org/10.1109/ccip.2016.7802886" @default.
- W2565482870 hasPublicationYear "2016" @default.
- W2565482870 type Work @default.
- W2565482870 sameAs 2565482870 @default.
- W2565482870 citedByCount "1" @default.
- W2565482870 countsByYear W25654828702017 @default.
- W2565482870 crossrefType "proceedings-article" @default.
- W2565482870 hasAuthorship W2565482870A5017493688 @default.
- W2565482870 hasAuthorship W2565482870A5019720185 @default.
- W2565482870 hasAuthorship W2565482870A5028967059 @default.
- W2565482870 hasConcept C115903097 @default.
- W2565482870 hasConcept C119857082 @default.
- W2565482870 hasConcept C121332964 @default.
- W2565482870 hasConcept C12267149 @default.
- W2565482870 hasConcept C13280743 @default.
- W2565482870 hasConcept C154945302 @default.
- W2565482870 hasConcept C15744967 @default.
- W2565482870 hasConcept C168167062 @default.
- W2565482870 hasConcept C169760540 @default.
- W2565482870 hasConcept C169900460 @default.
- W2565482870 hasConcept C185798385 @default.
- W2565482870 hasConcept C205649164 @default.
- W2565482870 hasConcept C2780150128 @default.
- W2565482870 hasConcept C41008148 @default.
- W2565482870 hasConcept C50644808 @default.
- W2565482870 hasConcept C97355855 @default.
- W2565482870 hasConceptScore W2565482870C115903097 @default.
- W2565482870 hasConceptScore W2565482870C119857082 @default.
- W2565482870 hasConceptScore W2565482870C121332964 @default.
- W2565482870 hasConceptScore W2565482870C12267149 @default.
- W2565482870 hasConceptScore W2565482870C13280743 @default.
- W2565482870 hasConceptScore W2565482870C154945302 @default.
- W2565482870 hasConceptScore W2565482870C15744967 @default.
- W2565482870 hasConceptScore W2565482870C168167062 @default.
- W2565482870 hasConceptScore W2565482870C169760540 @default.
- W2565482870 hasConceptScore W2565482870C169900460 @default.
- W2565482870 hasConceptScore W2565482870C185798385 @default.
- W2565482870 hasConceptScore W2565482870C205649164 @default.
- W2565482870 hasConceptScore W2565482870C2780150128 @default.
- W2565482870 hasConceptScore W2565482870C41008148 @default.
- W2565482870 hasConceptScore W2565482870C50644808 @default.
- W2565482870 hasConceptScore W2565482870C97355855 @default.
- W2565482870 hasLocation W25654828701 @default.
- W2565482870 hasOpenAccess W2565482870 @default.
- W2565482870 hasPrimaryLocation W25654828701 @default.
- W2565482870 hasRelatedWork W1539938656 @default.
- W2565482870 hasRelatedWork W1980713635 @default.
- W2565482870 hasRelatedWork W1995271453 @default.
- W2565482870 hasRelatedWork W1997850864 @default.
- W2565482870 hasRelatedWork W2017060484 @default.